Persistence Cave: A rich resource for paleontological research

Caves whisper exploration and discovery.

Anyone who has ever set foot in a cave of any size cannot help but wonder what lies beyond, what lurks in the crevices, the darkness.  Stepping into a cave is stepping into the entrance of mystery just waiting to be revealed.  In a world that has been largely tamed to fit the human species, there are few spaces that still hold an element of danger.  These unknown spaces beckon to the adventurous: “Explore me!” And who wouldn’t answer that call?

Me, that’s who. I am perfectly happy learning about the discoveries in caves from other people, thank you very much.

For people like me, Twitter and blogs have provided tantalizing glimpses of such explorations the world over.  And one of the more fascinating adventures has taken place at Persistence Cave, just one cave of many at Wind Cave National Park, South Dakota.

“Wind Cave National Park is full of fossils. Almost everywhere you go there’s going to be fossils: in the cave and at the surface. So Wind Cave National Park actually has [perhaps] 30-40 fossil sites.”

PhD student Jeff Martin explained more about the work he and his colleagues conducted there last season as he and his wife were literally driving to Texas to begin a new chapter in their lives. He was in the moving truck; his wife was in the jeep ahead.  Jeff and I had been in touch by email from time-to-time over the past year. As luck would have it, and thanks to his seemingly unending generosity, the time to discuss Persistence Cave by phone was while he was on the open road.

Wind Cave—as we know it now—was named because of the air that blows through an opening within.  It was considered a sacred place to the Native Americans long before settlers knew of its existence.  The Lakota people refer to the Black Hills (where Wind Cave is located) as ‘He Sapa’, (although it is listed as ‘Paha Sapa‘ on the Wind Cave National Park site).  Eventually, in 1903, it became the 8th National Park, but the first one to center around a cave.

Persistence Cave, a much smaller and less-explored cave in the park, was discovered by accident by Marc Ohms, spelunker and physical science technician for the park, in 2004.  His initial foray into the cave was brief: moving a cap rock, peering inside, seeing a rattlesnake, and deftly removing himself from the opening.

But its value as a fossil site was discovered thanks to another member of the park.

“Rod Horrocks, Wind Cave National Park Physical Scientist, in 2013, collected some sediment for preliminary analysis to see whether the site is paleontologically productive,” Jeff explained by email earlier.

It was, and this analysis is what eventually brought several scientists from diverse locations together.

Rod Horrocks sent the material to Dr. Jim Mead, Persistence Cave Project Leader, then at East Tennessee State University, where Jeff was a Master’s student at the time.  Jeff eventually moved to the University of Maine for his PhD, where Dr. Jacquelyn Gill was his advisor.

Sharon Holte, PhD Candidate at the University of Florida, was also a previous Master’s student of Jim’s, as well as Dr. Chris Jass at the Royal Alberta Museum,” wrote Jeff, explaining the connections between the Persistence Cave teammates. “He knows that we each excel in different aspects of vertebrate paleontology, and he invited each of us to collaborate on [and] bring our expertise into the research project. I brought Dr. Gill with me to the Black Hills to see the cave and to learn how a paleontological excavation is usually conducted. She brings a different set of skills related to paleoecology and palynology.”

Also on the team are undergraduate Chason Frost from the University of Maine who studies horticulture.  His skills and those of Dr. Gill help the group understand that fossil plants and pollen found in the cave.

Sharon Holte, aside from being one of the three principal spelunkers in this dig, is in charge of educational components.  Chris Bell at the University of Texas Austin studies the fossil rodents; Dr. Chris Jass and Dr. Jim Mead study fossil rodents as well, but include fossil snakes.

“Each person has their role,” he said, “their own ecological-niche, if you will.”

And Jeff?  He is the “bison guy.”

“My PhD research and dissertation focuses on bison body size adaptation to climate change over the past 40,000 years and how does that evolutionary legacy influence the bison we ranch today,” he wrote before he graduated this past Spring. “To answer this, I am using Persistence Cave and other fossil sites in Wind Cave National Park boundaries to geographically isolate my variation to only local animals.”

Wind Cave National Park, currently home to 400+ extant bison, offers information on both fossil bison and their living descendants.

 

EPSON DSC picture
EPSON DSC picture; bison at Wind Cave National Park, public domain from the National Park Service

 

“Collectively, we (Jacquelyn, Chason, and I) will then also look at the pollen grains and macro-botanicals preserved in the sediment to reconstruct the paleoecology and paleoclimate of the Black Hills through the last 11,000+ years to today. This is [to understand] the climate and ecology the bison were living in at these times.”

But let’s get back to the cave itself.

Below is an image of Natural Trap Cave (another exciting fossil cave dig in Wyoming; photo from myfossil.org):

 

Natural Trap Cave from myfossil.org

 

Compare that to an image of Persistence Cave from the top looking in (photo: Chason Frost as posted on Jeff Martin’s blog here):

 

Photo by Chason Frost - Persistence Cave entrance from Jeff's blog

 

 

 

And one of Sharon Holte peering out:

 

CB - SHolte peering out of cave

 

 

Finally, below is an image from the Rapid City Journal of “a tight spot in Wind Cave” (photo: National Park Service):

Marc Ohms WCNP National Park Service

 

When I asked about how this image compares to the space within Persistence Cave, I was surprised by Jeff’s email response.

“The picture above is much larger than the cave we are working in,” he described of the 2015 dig.  “The cave is very narrow and only fits one person’s shoulder width and up to 1.5 shoulder widths in places. The vertical height is similar to the above photo though.”

“I’m a broad shouldered fella’ and very, very tall,” he continued by phone recently. “The space in there to turn around is not quite enough for me, so I’d have to climb in and then climb backwards out.”

“Chris Jass and I are both the exact same height. Chris is a far more experienced spelunker, and even Chris wasn’t going in there.”

Sharon Holte, Chason Frost and Jim Mead were the principal spelunkers for the site.  Only one person could be in the cave at a time, and their only source of light came from a headlamp.  Trowels, buckets and ropes: their only tools.

 

CB - Sharon Holte important gear


“I thanked them endlessly, and I still thank them for all the work they were doing down in there,” Jeff said of his three colleagues. (A video of Sharon’s work in the cave can be found here.)

Work involved taking chunks of sediment in buckets out of the cave, tagging it, labeling the information (where that sediment appeared on the appropriate grid, at what depth, etc.), bagging that sediment, and then sending it down—by zipline, of all things!—to the truck below, where it could be taken to be screenwashed by other team members. (You can see a video of that process here, on Jeff’s blog.)

 

CB - screenwashing for microfossils

Screenshot of tweet during the 2015 Persistence Cave (#cavebison) dig

 

Their fossil discoveries have been diverse. Jeff wrote that “[a] camelid, (the species is unknown at this time), has been an extraordinary find. We have 5 different kinds of snakes and at least 5 different species of bats. [A] pika is also an intriguing find.”

 

 

CB - Jim Mead and snakes

CB - fossils found

 

CB - snake fossil

 

CB - toe bone and Jeff Martin

 

CB - Jeff Martins favorite bone found at that point

Screenshots of some of the many tweets during the 2015 Persistence Cave (#cavebison) dig

 

“One of the fun things that we ran across was a ton of Ponderosa pine needles,” he mused later by phone. “That’s the primary tree out there now.  Today, they’re mostly a two-needle bundle. In the past, it seems as though they were a three-needle bundle. And we don’t know exactly what that means yet.  So we’re trying to figure out if that means anything at all; if it’s a genetic difference; or if it truly is an environmental difference that it’s responding to.”

 

CB - Twitter conversation about plants

Screenshots of some of the many tweets during the 2015 Persistence Cave (#cavebison) dig; the scientists involved in this dig didn’t just conduct research, they also conducted outreach to the larger public through social media.

 

 

Work did not continue as expected on the site this year for a number of reasons, but it’s not over yet.  Studies on the fossils continue at the University of Maine (pollen and plants); the bison fossils have travelled with Jeff to Texas A&M University where he is now in wildlife sciences; and the rest of the fossils are housed at The Mammoth Site, where Dr. Jim Mead is currently Chief Scientist and Director.

The Mammoth Site is another major connection between many of the team members, as they have each “worked [there] at some point…over the last 40 years.”

As many know, that site is a paleontological (and proboscidean!) goldmine turned museum, thanks to the work of many, including the late Dr. Larry Agenbroad.  Over 60 mammoth fossils have been discovered there to-date, among other fossil species.

Bonebed at The Mammoth Site

Image of the bonebed at The Mammoth Site where excavations continue to this day

 

“He was probably THE reason that I got into the School of Mines [as an undergrad] and was also the reason I got into paleontology,” Jeff said of Dr. Agenbroad.

“I’m not alone,” he continued. “There are several of us that are like that.  We all stem from Larry.”

The reverence in his voice was not difficult for me to understand.

Jeff’s introduction to this paleontologist began when he was much younger, through the 2000 documentary “Raising the Mammoth.” The film focuses on the Jarkov mammoth, and Bernard Buigues’ attempts to excavate it.  The team Buigues calls upon to help include some giants of proboscidean research: Dick Mol and Larry Agenbroad.

A year or so after seeing that film, Jeff’s family traveled to The Mammoth Site.  It was winter in South Dakota, and, he said, his family basically had “the run of the whole place.”  With a graciousness I am sure permeates everyone who works at that site, one of the interpreters (‘docents’) offered to bring Dr. Agenbroad out to meet them.

“There’s 8-year-old me that’s just giddy with joy to be able to meet one of my idols,” Jeff shared with no small amount of enthusiasm. “And then he said, ‘You’re a little bit too young to work for me. Come back when you’re older.’”

“So that’s exactly what I did. I worked for him in [the summers of] 2007 at the Hudson-Meng Bison Kill Site and  2008 and 2009 at the Mammoth Site as an intern while I was at the School of Mines.”

Dr. Agenbroad passed away two years ago, followed by his wife, Wanda, a month later.  This saddened me as someone who did not know him closely; I could only imagine how this affected Jeff, who had.

“I’ve made my peace with it,” he acknowledged, and then said something that truly moved me: “I have several things that Jim [Mead] gave me…and one of them is a pocketknife that I carry on me every single day. One of the same pocketknives that Larry carried on him every single day. So I’ve got Larry with me, right now, as a matter of fact.”

Jeff and his colleagues hope to resume work at Persistence Cave next year.

As we discussed some of the findings from last year’s dig, he said, “The oldest date right now at Persistence Cave is at 39,000 and the youngest date is at 3,200.  We have some 37,000 years of deposits with bison throughout. And we also have [modern-day] bison living at the surface!”

Jeff’s research, both of Persistence Cave and of Project Bison, underscore his passion for this animal, as well as the desire to understand its ecological significance.

“I’m looking at both the fossil record and looking at their body size, using the calcaneum [heel bone] as the proxy for body mass. And then also comparing that to modern bison that have just recently passed away within the past 1-3 years.  That’s what I was doing this past summer: going to carcass sites and measuring their calcanea. The unique thing about Wind Cave is that they have almost every single animal microchipped. So they can track this animal throughout its life. On top of that, they bring them in once a year and weigh them. So now we have a known mass of these animals and now a known measurement, because I measured some of their calcanea.

“I’ve got some [fossil bison calcaneal] measurements that go up to 180 millimeters, and I also have Bison bison today that the longest that I’ll find are 130 millimeters.  So quite a body size change in between the fossil and modern.”

Jeff presented some of his research at last year’s Society of Vertebrate Paleontology (SVP) meeting in Dallas.

Describing the results, he explained, “As it gets colder, bison get bigger.  As temperatures are increasing, bison get smaller. That has modern day application to the bison industry today. If we’ll have smaller bison with future global warming, we’re going to have to change our management options.”

As I pondered all of the information Jeff had shared with me about the work he and his colleagues had done, I couldn’t help but go back to the images of how small the cave actually is. If Wind Cave National Park has an abundance of fossil sites, why go through the trouble of trying to access this one?

“Surface localities often represent a one-time event,” he explained. “Persistence Cave represents many events over a long period of time. That’s the unique part of this locality.”

I will continue to enjoy their adventures from the safety of my computer!

 

**************

Jeff Martin: you were extraordinarily generous with your time and responses to my myriad questions.  Likewise, I am in awe of how open you were with your experiences.  For being willing to share all of this, I am truly grateful.  It was an honor and a pleasure connecting with you!

When #CaveBison starts up again, you can be sure it will be on Twitter!  Follow these scientists:

@BisonJeff

@JacquelynGill

@SharonHolte

@Pocket_Botanist

@MammothSite

 

You can follow Jeff’s research here and here

Jacquelyn Gill is one of three hosts of the podcast, Warm Regards, which discusses climate change.

 

Advertisements

Dr. Brooke Crowley – Secrets Revealed from Mammoths & Mastodons in the Cincinnati Region

It may seem unlikely to uncover details about what an animal ate thousands of years after its extinction, absent of so much of the flora and fauna that co-existed with that animal.

It might seem even more improbable to illicit that information from fossilized teeth alone.

And yet, this is exactly what Dr. Brooke Crowley and Eric Baumann of the University of Cincinnati have done.

Brooke and Eric Baumann on Kardung La

[image of Eric Baumann and Dr. Brooke Crowley on Khardung La, India; courtesy of Dr. Crowley)

They sampled molars from eight different mammoths and four mastodons, each with a known provenance in the Cincinnati region. Analyzing stable isotopes within each tooth provided information not only about each animal’s diet, but also its habitat.

“Isotopes in our tissues,” Dr. Crowley, Assistant Professor of Quaternary Paleoecology, explained in a phone interview, “are environmental integrators.”

“What we like to say is that isotope values in an animal’s tissues can tell you something about its life. That could be the diet, it could be the environment the animal inhabits, or, in the case of strontium, it could be the actual locality where it lives.”

Over the past 30 years, studying stable isotopes has become an increasingly popular method of understanding both paleontological and archaeological finds in more depth.

These chemical signatures reveal details incorporated within the body over its lifetime and remain in its bones past its death. In other words, what one eats and drinks leave traces of elements that point back to that very same diet and to the region from which one drank water. That organic material has footprints, and scientists—using mass spectrometers and other types of analysis—can read and interpret them.

Remarkably, these chemical footprints remain, even after thousands upon thousands of years. And teeth, with their sturdy crystalline structure, seem to offer reliable stable isotope data.

Dr. Crowley and recent graduate Eric Baumann described their research in a paper to be published in Boreas. Carbon isotopes revealed broad information about what these twelve proboscideans ate; strontium and oxygen isotopes uncovered the region and climate in which these animals lived.

They began their research expecting to uncover that the two species were nomadic, that their teeth were discovered in areas geographically distant from their place of origin. They also expected that mammoths and mastodons ate different types of vegetation.

While their research confirmed the different diet, it provided surprising results for habitat: with the exception of one mastodon, all of these animals actually lived and remained within the Cincinnati region.

In response to why they originally thought these animals might be nomadic, Dr. Crowley pointed to the behavior of existing species.

“Most large animals aren’t sedentary.”

“In general,” she explained, “big creatures move a fair amount; they have large stomachs and they eat a lot of food. And there may be different reasons for moving. It could be a dietary need, it could be there’s some particular nutrient in the soil that they want from time-to-time, or there may be a particular region they like for birthing or mating.”

We see this today in humpback, gray and blue whale populations on either side of the North American continent, migrating from warmer regions in the ocean to colder regions thousands of miles north.

“African elephants, in particular, are typically very destructive by nature. They are what we call ‘environmental engineers.’ Their behavior changes the environment around them.”

Perhaps the most notable affect elephants leave in their wake are the trees they knock down. Consider, too, that elephants eat 160 – 300+ pounds of vegetation a day per elephant.

“[T]hey heavily modify an area. Then they move and modify another area. And they typically have pretty large home ranges. Some populations seasonally migrate from one place to another; others are just more continuously on the move.”

Embed from Getty Images

But, she cautions, “we can’t necessarily use that information to interpret the behavior of extinct species. They’re not necessarily that closely related. But it is something we have to go on.”

In their research, the authors include data from water samples taken from rivers and creeks in Ohio and Kentucky.

What, one might wonder, do modern-day water samples have to do with ancient teeth and their composition?

Strontium within water reflects the geology from which it came. This information is stored within teeth, thereby leaving yet more footprints the scientists can interpret.

Of the types of isotopes analyzed, Dr. Crowley explained that “[a] lot more work has been conducted on carbon and oxygen. So we didn’t really need to establish a local baseline for either of those two isotopes. But strontium’s a little less studied, and we didn’t know what sort of regional variability to expect.

“Without any comparative baseline, it’s hard to interpret what strontium in the animals might mean. We could say, ‘well, they’re all really similar’, but if we didn’t really know what to expect for this region, we wouldn’t know if they’re similar to the region or if all of those animals may have come from somewhere else. So we needed to establish a local baseline.”

In other words, they needed to understand the chemical signatures within local water in order to see if they matched the chemical signatures within these teeth.

“[This is] the first step,” she continued, “in what will hopefully be a long-term research direction: thinking about North American fauna and ecological change over time here on our own continent.”

When asked if this meant she would study other extinct animals or continue researching mammoths and mastodons, her response was “potentially both.”

“Currently I’m [working on a] project using strontium isotopes to look in a little more depth at particular individuals.”

Brooke and a bison scapula

[image of Dr. Brooke Crowley with a bison scapula; courtesy of Dr. Crowley]

She referenced a mastodon from Michigan as an example.

“[W]e’ve sampled little increments of his tusk to see how he moved during his lifetime.”

“One drawback of teeth,” she mentioned, “is that they just give you a relatively brief snapshot in time, whereas a tusk gives you a continuous record of an individual’s life.”

But she is equally interested in what she described as “big-scale patterns” of behavior across various species. And in this research, ‘behavior’ refers to details about their diet, and whether specific species roamed or remained in a specific region.

“If there is any living taxa that we could sample,” she added, “it would be interesting to see how they may have changed, even if they didn’t go extinct.”

“There’s interesting work that’s been done,” she said, referring to research of one of her colleagues, “[regarding the origins of] fossil deposits that indicates mastodons may have retreated to a particular part of the United States just before the Terminal Pleistocene.”

The Pleistocene is a period of time on earth that dates from about 2 million years ago through about 11-10, 000 years ago. The ‘Terminal Pleistocene’ refers to an extinction event within this period.

“Prior to the Terminal Pleistocene, they were found all over the United States. At the Terminal Pleistocene, they’re only found in a little tiny patch of the United States. Something affected their distribution. And I call it ‘retreat’ because it’s a much smaller distribution than they had before.

“By analyzing isotopes in bones and teeth, we would potentially be able to build off of these fossil distributions to paint a more interesting ecological picture of the Terminal Pleistocene.”

Painting more interesting ecological pictures is a strong focus of Dr. Crowley’s work. A scientist who has travelled extensively throughout the world, her research has taken her to the Canary Islands, the Dominican Republic, Trinidad and Madagascar. Reading her blog and her website, one recognizes a distinct fondness for the aforementioned African country.

Embed from Getty Images

When asked if Madagascar was where her heart was, she responded, “In many ways, yes. Part of that is that I’ve devoted a lot of time and energy into learning a lot about it. So, now I’m invested.”

“There are certainly conservation issues in our own country,” she continued, “but there are other places–and Madagascar is one of them–where there’s a real need to try to make some changes happen now for future conservation and biodiversity management.”

“Up until recently, the recent past of Madagascar was rather understudied. It turns out that there are a lot of interesting questions that are still unanswered.”

Her website, Agoraphotia.com, describes her specific interests:

I investigate ecological interactions among living and recently extinct animals using stable isotope biogeochemistry. My interests include niche partitioning, conservation biology, and paleoecology. I am particularly interested in the causes and consequences of recent extinctions, and the ecological repercussions of habitat fragmentation and degradation.

She has studied fossilized rodents, lemurs and orangutans; she has researched climate change; she has studied plants and soil.

She lists research projects in which she has been involved:

•Assessing the utility of stable oxygen isotopes in distinguishing dietary niches.

•Distinguishing isotopic niches of fossil rodents in the Dominican Republic.

•Establishing the stable isotope ecology of modern and Prehistoric Trinidad.

•Exploring ecological change following human settlement on the Canary Islands.

•Identifying responses of the animal community to climate change and human impacts in Madagascar.

•Quantifying spatial variability in bioavailable strontium and assessing changes in mobility patterns of extinct and extant North American megafauna.

Prior to the University of Cincinnati, she lectured at the University of Toronto and volunteered at the Royal Ontario Museum in the OWLS (Open the World of Learning to Students) program.

She describes herself as “a relatively new professor in Cincinnati”, one who actively works to try and include students into her research projects. In this, she feels she has been successful, as she has had a number of students involved in her postdoctoral and graduate research and currently has students working with her in the lab.

The study of proboscidean teeth that lead to the paper to be published in Boreas was, she said, “originally designed to be a student project.”

Given her vast and varied experience, one might wonder why the focus was extinct North American fauna.

Explaining that most of her students are either from Ohio or the surrounding region, she said, “It’s a little more relevant for them to think about animals that lived in their backyard than animals that lived on the other side of the planet.”

This, too, is why they used teeth from the Cincinnati Museum of Natural History, rather than the collections of other neighboring state museums.

Brooke in Madagascar2

[image of Dr. Crowley in Madagascar next to a sign that warns visitors that “Lake Ravelobe is forbidden” and that “Crocodiles attack”; courtesy of Dr. Crowley]

“Many of the reasons that I do what I do and that I am where I am is because of other people who have helped me along the way or inspired me. And really one of the biggest reasons that I wanted to go into academia in the first place was because I feel like I have been empowered in many ways to try to make a difference.

“And I feel like that’s something that I can share with others and then try to make a difference by empowering others and helping them find their way and be compassionate as well.

“So that’s sort of my goal.”

She chuckled. “I don’t know how much I have really met that goal, but I do try, and I’m still pretty new to being a professor. So, I’m finding my way. It’s a challenge, but it’s a good learning experience, and I find it to be pretty rewarding.”

Brooke on a promontory in Tenerife

[image of Dr. Crowley on a promontory in Tenerife, Canary Islands; courtesy of Dr. Crowley]

———————————–

A Mammuthus primigenius-sized THANK YOU to Dr. Brooke Crowley for her generous time, help and fascinating responses to my questions!  What a great honor to connect with her!

You can read the paper in Boreas, Stable isotopes reveal ecological differences amongst now-extinct proboscideans from the Cincinnati region, USA:  http://onlinelibrary.wiley.com/doi/10.1111/bor.12091/abstract

I had a very difficult time grasping the concept of isotopes. This is due to my struggle with chemistry in general and not a reflection of the gracious people below who took the time to try to help me understand it.  I extend sincere thank you’s to:

  • Dr. Brooke Crowley
  • my dad
  • my sister-in-law who studies science
  • Dr. Suzanne Pilaar Birch (@suzie_birch)
  • Ariel Zych (@Arieloquent) and Science Friday (@scifri)

If you are interested in understanding more, here is further reading:

  1. Dr. Brooke Crowley, Stable Isotope Ecology: http://crowleyteaching.wordpress.com/courses/stable-isotope-ecology/
  2. Stable Isotopes in Zooarchaeology: http://sizwg.wordpress.com/bibliography/
  3. New insight from old bones: stable isotope analysis of fossil mammals, by Mark Clementz: http://www.mammalogy.org/articles/new-insight-old-bones-stable-isotope-analysis-fossil-mammals
  4. Applications of Stable Isotope Analysis, K. Kris Hirst: http://archaeology.about.com/od/stableisotopes/a/si_intro.htm

Climate change seminar ultimately canceled – Seattle Times

This is an incredible (albeit frustrating and disappointing) story by Danny Westneat at the Seattle Times.

Uncivil scientists thwart Cliff Mass’ climate-change debate: http://seattletimes.com/html/localnews/2021826582_westneat15xml.html

Cliff Mass tried to organize a seminar to stop scientists from warring about climate change. But so much name-calling broke out he had to cancel it.