Meet Dr. Katy Smith – Mastodon Detective

If you imagine the Great Lakes region over 10,000 years ago, you might see large, hairy beasts with relatively straight tusks grazing around boggy areas or moving within dense forests.  Their fur and overall appearance might cause you to confuse them with woolly mammoths, but these are the mammoths’ shorter, stockier cousins.  And if any of them would let you get close enough to inspect their mouths, you’d see in an instant that their teeth are completely different than those of mammoths.

 

[image of contemporary boggy area in Alaska, courtesy Getty Images]

 

Whereas mammoths are believed to have eaten grasses and even flowers, mastodons needed teeth suited to the mastication of hardier stuff: shrubs, parts of trees, perhaps pinecones?   Mastodon teeth, with the bumps and ridges one might associate with carnivores, are easily recognizable as ‘teeth.’  Mammoths, in contrast, needed to grind food, producing teeth with spherical lengths of ridges across each tooth.

ISM - Mastodon tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.  Can you tell which tooth belongs to which species?]

 

ISM - Mammoth tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.]

And while woolly mammoths pervade popular culture and interest, there are some, like Dr. Katy Smith, Associate Professor of Geology at Georgia Southern University and Curator of the Georgia Southern Museum, who prefer their lesser-known cousins and have made fascinating contributions to our understanding of them.

Mastodon discoveries usually produce the fossils of a single animal, and rarely a complete skeleton. Rarer still, finding skeletal remains of multiple mastodons at the same site.

Such a unique discovery occurred in 2005, when more than 300 fossils were found in Hebron, Indiana.  Now known as the “Bothwell site,” it was originally going to be the location of the landowner’s pond.  Instead, Indiana State Museum paleobiologist Ron Richards and his crew uncovered bones that included numerous mastodons (Mammut americanum), giant beaver (Castoroides) and hoofed animals with even-toes (artiodactyls).

ISM - 2005 Bothwell Mastodon 2

 

ISM - 2005 Bothwell Mastodon 1

[images of the Bothwell site dig, courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 2.]

 

Four years later, the Bothwell site became the focus of Katy Smith, her dissertation, and two subsequent papers she co-wrote with Dr. Daniel Fisher at the University of Michigan.

But let’s take a moment to consider what paleontologists uncover. However rudimentary this may seem, it is important to note that bones are generally not discovered in neat order, intact and with each skeletal component attached where it would have been in the life of the animal.

Consider, too, that not all bones survive.  And those that do are often broken or in terrible condition.

So even at a site such as Bothwell, which produced lots of fossils, a paleontologist’s job is no less challenging.  The pieces of information are incomplete, mere clues to the animals that died there.

The questions, however, are profuse.

Why were so many animals found in that one spot?

If, as it is currently debated, mastodons shared behavioral traits with modern-day elephants, was this a family unit?

If so, was this group—like elephants–comprised largely of female and juvenile mastodons?

And why were other unrelated animals discovered among them?

Did a sudden disaster kill them all?  Were humans involved?

 

 

Sexual dimorphism is another way of referring to the traits that make an animal either female or male.  Some of us would assume, since mastodon pelvic bones were not among the Bothwell fossil assemblage, that the sex of these animals would remain unknown.

There were 13 mastodon tusks, only four of which were complete. And this, remarkably, is what prompted Katy Smith’s research.

“I wanted to know if I just had tusks, what can I do to figure out if I’m looking at a male or a female,” she explained by phone.

Katy Smith - measuring an African elephant tusk

 

[image of Dr. Katy Smith measuring an African elephant tusk in (what this author believes must be one of the greatest places on earth) the basement and fossil collection of the University of Michigan; courtesy of Dr. Katy Smith]

 

“Other people have looked at [sexual dimorphism], but I wanted to look at it specifically with the Bothwell mastodons, because they were inferred to be female, and female mastodons are less common in the fossil record than males.

“When I presented preliminary results from my research in a paleontology class, the professor said, ‘Why don’t you try multivariate analysis?’ And it just kind of spiraled from there.”

Multivariate analysis,’ as the name implies, means using more than one type of measurement or observation towards a hypothesis.  In other words, rather than simply using size as a determination of sexual dimorphism, applying numerous methods and statistics that support or disprove it.

Already, the amount of information scientists have pulled from tusks alone is fascinating.

Tusks are teeth.  They are described, in Dr. Smith’s dissertation as “hypertrophic incisors.” And, unlike human teeth, they continue to grow the entire life of the animal. So where we can simply look at a human tooth and know immediately whether it is from an adult or a child, the same cannot be done with tusks.

What their hardy structure records includes the age of the animal, growth in winter or summer months each year, their overall diet, and periods of nutritional stress.  (As described in an earlier post, Proboscidean molars can even provide details regarding where they roamed during life.)

But much of this information can only be gleaned from well-preserved, intact tusks, as well as from cutting into and examining their chemical composition.

“If you don’t know what the sex of the animal is before you look at tusk microstructure,” she said, “it can be hard to interpret what you’re looking at.”

Part of what Dr. Smith hoped to discover were similarities in the tusks where sex and age had already been determined.  If certain structural elements were the same across female mastodon tusks, such that they tended to differ from male mastodon tusks, this might help determine sexual dimorphism in future tusk discoveries.

She also hoped to discover any similarities between the tusks of extant elephants and mastodons.

Katy Smith -longitudinally bisected tusk

 

[image of longitudinally bisected tusk, courtesy of Dr. Katy Smith] 

 

Thus, she studied and measured tusks of both species from numerous museum collections. (Asian elephant tusks were not used, as female elephants of this species tend to have either tiny tusks or no tusks at all.)  She rather amusingly refers to the approximate amount of tusks involved as “5,000 pounds of tusk.”

Her dissertation and the two papers describe the type of analysis performed in detail.  Among them were canonical variates analysis (CVA) and discriminant function analysis (DFA).

“Fortunately, we didn’t have to cut into the tusks to do those measurements. You just insert a stiff wire into the pulp cavity.”

“We think about tusks sometimes as stacks of sugar cones, because they actually grow in a kind of [layered] cone structure. So you think about one sugar cone, and then you put another one inside that one and then another one inside that one and so on and so forth. And the last sugar cone is empty. There’s nothing in it. That represents the pulp cavity.”

“[Analyzing the] pulp cavity is probably one of the best single measurements that you can use to distinguish between male and females. [I]n females, that pulp cavity will terminate before the gum line, and in males, it will terminate after the gum line, closer to the tip.

“This is something that we saw in almost every mastodon. So it was kind of cool.”

 

Katy Smith - female mastodon

 

[image of female mastodon skull and tusks, courtesy of Dr. Katy Smith]

 

“If we could have cut every tusk, I would have,” she admitted, and laughed. “But it was a matter of collecting these measurements at different museums. And so I would just go there and collect all of them, and that was how we’d get the pulp cavity depth.”

“I’ve always been interested in paleontology,” she said when I asked her how she got started.

“I’m one of those kids who just never grew out of it. My parents used to take me to the museum all the time, and I used to spend hours and hours staring at the dinosaur dioramas there, just loving it.  I told my kindergarten teacher I wanted to be a paleontologist. I never changed! My 5-year-old self grew up and became a paleontologist.”

But her interests moved away from dinosaurs when she realized that their fossil record in Wisconsin, her home state, was rare to nonexistent.

After all, she said, “I started just wanting to explore what was underneath my feet.”

It wasn’t until grad school at Michigan State, where she met the late Dr. Alan Holman, that she realized her passion for mastodons.  His own interest in the species was infectious, and it was through him that she learned of the numerous mastodon (Mammut americanum) fossil discoveries in the area.

“Wow!” she said, recalling her initial reaction. “There are over 300 mastodons in Michigan. This is exciting!”

Katy Smith - male mastodon

[image of male mastodon skull and tusks, courtesy of Dr. Katy Smith]

Not surprisingly, she did her PhD work at the University of Michigan, home to Proboscidean expert Dr. Daniel Fisher, who was her advisor.

“I wanted to work with him,” she explained, “because I wanted to continue working on mastodons, and he had a couple of ideas for projects. One of them included this assemblage of mastodons from Indiana, which were—supposedly—all female.”

What she discovered regarding the Bothwell site is both thought-provoking and fascinating:

  • 8 tusks were determined to be female; the other 5 are unknown
  • the ages of the mastodons range between 19 and 31 years old
  • there is evidence that at least one juvenile might have been among them (a “juvenile tooth crown” was found)
  • given that two mastodons died in winter, and another two died either in late summer or early autumn, this indicates that the collective deaths of these animals didn’t happen at the same time (hence, not a single event)
  • none of the mastodons appeared to be under nutritional stress when they died
  • members of a family unit would be expected to have the same “isotope profiles”–chemical signatures in their teeth–but these do not

Based on the evidence provided, Dr. Smith wonders whether these animals were part of a meat cache for humans (members of the Clovis culture) that co-existed at that time.

But perhaps the single most remarkable result of her research is helping other paleontologists–who often have nothing more than a single tusk–determine the sex of that animal using her different types of analysis.

Prior to her dissertation, only one female mastodon tusk had been analyzed for growth rate.  To date, I am unaware of any other publication (paper or book) that helps detail the sexual dimorphism in mastodons by tusks alone.

When I remarked upon this, I asked her if others had cited her work.  Her response, after stating that others had, was equally fascinating to me.

“It’s always the hope as a scientist that you’re contributing in some way,” she said, “and you know that you’re contributing if somebody else is using what you’ve done.”

 

An enormous and sincere THANK YOU to Dr. Katy Smith for her generous and fascinating answers to my many questions, her gracious help when I had trouble understanding certain points, and for being so much fun with whom to connect! I cannot express how much I wish I could attend her classes, nor how fascinating I found her dissertation. I am profoundly grateful that she shared it with me!

A sincere thank you to my Dad, as well, for helping me understand tooth components (i.e.: dentin, cementum)!

**A quick reminder that I am neither a scientist nor a paleontologist, so any errors in this post are my own.

Bothwell Mastodont Dig, courtesy of Indiana State Museum; many thanks to Bruce Williams and Leslie Lorance!

—————

References:

 

Other references:

 

Cohoes mastodon size comparison

[image of sign in the NY State Museum illustrating the size difference between an extant elephant, a woolly mammoth and the Cohoes mastodon; picture taken by the author]

Advertisements

From the Depths of an Indiana Cave: A Fossil Treasure Trove

Around perhaps 25,000 years ago in Southern Indiana, an injured Dire Wolf made its way into a cave and never came back out. With three good legs and one that had been out of socket for a year or so, the wolf crawled through the smaller spaces and eventually—whether through an accidental fall or otherwise—landed at the bottom of a deep pit. It was trapped.

Ron Richards, Senior Research Curator of Paleobiology at the Indiana State Museum, and his crew discovered its skeleton after digging in that particular room for 3 or 4 seasons.

Ron took that set of bones to pathologists for more information. However long that injury was sustained, and it was not a short amount of time, that wolf was a survivor. They determined the one leg probably didn’t touch the ground, but that it could probably still run using the other three.

“What normally is a circular ball-joint on his thighbone was flattened on one whole side,” Ron explained in a phone interview.

“I think that probably affected his ability to back out. Maybe he smelled some rotting carcass smell or something, got too near and couldn’t back out, and probably went over the top [of the pit.]”

A reconstruction of that event, complete with an actual cast of that specific room in the cave, can be seen at the Indiana State Museum today.

What may not be apparent was the work involved in creating that cast.

The word “cave” might invoke images of enormous open spaces underground. This is not at all that kind of cave. Not at the initial opening, nor at any space within as one moves deeper inside.

“Years ago, you had to go into a belly-crawl,” Ron said of the entrance, “but now we’ve moved through it so much, we can do a hands-and-knees crawl.”

They built a platform to work above water pooling at the bottom of the pit, and—in order to keep the walls dry for rubber molds—they used blowtorches. Ron, cave dig crewmembers and people from RCI (Research Casting International) worked together on the beginning stages of the room’s cast. The finished product was done at RCI headquarters in Ontario.

RCI - Dire wolf replica

[Image of the cave cast and wolf replica, http://www.rescast.com, by Research Casting International for the Indiana State Museum]

Nothing done in that cave is an easy process.

When Ron first began digging in that cave, he said, “I thought it would take 9 people 9 days, and we could finish the project.”

That was in 1987. The dig was prompted by the discovery of a single peccary bone.

Ever since, for approximately two weeks each year, Ron and his crew have returned to dig.

“[It was] the first big cave dig we had done,” he continued, describing that first year. “We’d done a couple of mastodon digs at the time, but we really had no money for the budget. There was nothing there. We had no trained staff. We had almost no equipment.”

“I remember pulling this together, pulling different people from different sections of the museum.”

And when it came to potential funding for this excavation, Ron recalled that he was asked, ‘Can’t you do this another time?’

“I didn’t know what to say,” he admitted, “so I didn’t say anything. The next day, we got the gear loaded, and we headed down for the cave. We just did not look back!”

“As it worked out, we dug, we found more bone: parts of little peccaries, parts of big peccaries, and other animals that no longer occur in the region.”

Peccaries are relatives of modern pigs, but instead of upper canine teeth that curve up—as in modern hogs—their teeth “drive straight down like daggers,” as Ron explained. Today, modern peccaries live within the Southwest United States, as well as in Central and South America. But during the Ice Age, peccaries were common in Indiana and Eastern U.S.

Peccary Fig 02  iceage13a upgraded

[Pleistocene peccary by Karen Yoler, image courtesy of Ron Richards, the Indiana State Museum.  Per Ron Richards: “This image is artist Karen Yoler’s  concept of what the peccary looked like.  We did drop off the larger dew claws on the front legs and added a little more canine tooth size and gave it a more perpendicular orientation.”]

 

[Angry javelina–or collared peccary–close up. Javelina go by many names such as wild pig,boar,etc.; image and caption from Getty Images.]

Working deep in the cave initially, the crew created a system that they continue to use, with some improvements, to this day: some people dig in the cave and place the soil into buckets; other people haul the buckets out of the cave and bring them down to a stream; still others screen the soil for fossils.

All of the data is recorded; all of the soil is screened.

“Above you are big spiders—lots of cave spiders and cave crickets. They don’t bother you, but some people get the heebie-jeebies, you know? I mean, you look up, and there [are these] massive things moving around,” he said and chuckled.

In recent years, they’ve developed what Ron refers to as “tramways,” 60-70 feet of ramps created by parallel boards with cross slats. Tramways—some with rollers—help bring the buckets out of the entrance to the cave and down the hillside.

ISM - Cave with tramway

 

[Digging…with the tramway in position for hauling buckets of sediment out, image courtesy of Ron Richards, the Indiana State Museum.]

To help carry 15-20 buckets at a time down to the spring to be screened, they employ an ATV with a tractor.

“[From all of the] tons of soil that gets screened,” Ron stated, “[there remains some] soil that’s left with small bones. We bag that out, bring it back to the museum, and then they rescreen it and clean it. And then–spoonful by spoonful–they go under the binocular microscope, and they pick out all the small bones and teeth.”

His crew is a dedicated group: leaving their hotel rooms at 8am and working throughout the day—with a short break for lunch–until 5pm (or later if the weather holds). Ideally, there are nine crewmembers per season, but they have done it with less people. Digging has sometimes required breaking rock, so among the many tools used are sledgehammers and chisels.

ISM - Cave digging

 

[Digging for peccary bones, image courtesy of Ron Richards, the Indiana State Museum.]

 

Over the years, the cave rooms have gained descriptive names: the Peccary Room, for example, the X Room, and the Bat Room.

The “Microfauna Room” was named after the large amount of small bones they found when they began digging through the top layers of soil and rock. This is where the aforementioned Dire Wolf was discovered.

“Near the bottom of that room, down at the 25,000-yr level,” Ron explained, “we began to get fairly complete skeletons of things like Dire Wolf, Black Bear, an otter, a snowshoe hare, a lot of small shrews and mice.”

“We really believe that those animals fell in this pit. They dropped, and they went down about 15-20 feet. I think most of the time it was probably full of water.

“It’s just a lonely place to be. Whether they could stand at the bottom, I don’t know. But there’s no way out.

“There [was] enough mud washing in from the ceiling of that room that they were buried under real fine sediments. And that preserved them very well.”

Some of the fossils discovered have been both remarkable and rare. A tapir tooth—only the second to be found in the entire state of Indiana—was found in the cave. Several beautiful armadillo (Dasypus bellus) plates [osteoderms] have been discovered have been discovered (that is the actual name; ‘beautiful’ is not necessarily a description). Ron painted a picture of this by saying, “When one animal dies, there’s about 3,000 plates that disintegrate and go everywhere, like little dominoes.”

“Two years ago,” he said, describing the ‘Twilight Room’, “we started finding some articulated peccary skeletons.”

“Deep in the cave we didn’t find a lot of that. The bones would be disturbed, and you could just see sort of a jumbled mass that had been moved by water, by gravity, [or] by other animals.”

“In this room, we found things that were articulated, feet in place, all of the little toes in place. Really unusual.”

The earliest fossils found were parts of a giant land tortoise, a species that cannot live in cold climates. Finding this indicated that the area, at that time, did not freeze.

Also found were fossils of a pine marten, a species that, conversely, lives in Northern climates today.

And as for peccaries, Ron estimates that they have found the bones of approximately 650 individuals. They determined this number by by counting the total number of large, pointed canine teeth and dividing by four.

ISM - flat-headed peccary

[Bones & skull of the flat-headed peccary, image courtesy of Ron Richards, the Indiana State Museum.]

“So the question is then: did they live here? Or did they all have a misfortune and die here? It’s a little of both, but it’s mainly that they probably inhabited this cave and rock shelter for most of that time period.”

Ron mentioned that a number of the fossil discoveries in the cave are new to him.

So how does one identify unfamiliar fossils?

“We have a general reference collection of modern bones,” he replied, “and there is a big collection at Indiana University, Bloomington that I had become very familiar with in the 1970’s and 1980’s.”

He went on to explain that he referenced available literature and visited other museum collections.

“I had written correspondence,” he continued, “and the mailing of specimens with several experts in the eastern United States. My foremost ‘mentors’ were Dr. Russell Graham (then The Illinois State Museum), and the late Dr. J. Alan Holman (The Museum, Michigan State University), but I also had open correspondence with the late John E. Guilday (Carnegie Museum of Natural History), the late Dr. Paul W. Parmalee (The McClung Museum, University of Tennessee), Dr. Holmes Semken (University of Iowa) and the late Wm. R. Adams (Zooarchaeology Laboratory, Indiana University).”

“Everything [is] dug in square units,” he said. “We have thousands of these units. We can show the distribution and abundance of anything that pretty much died in that cave for thousands of years.”

And the work is hardly done. Ron estimates that the digging portion may be completed within the next 5 seasons (5 years), but the analysis of the immense amount of fossils has yet to begin.

“We’ve got probably 30 radiocarbon dates from the cave. Every year, we get one or two more.”

Ron explained that the cave has, so far, produced “probably 7,000 small plastic boxes of small bones, and 2,000-3000 larger containers of larger bones.”

“It’s my job to identify those. But, you understand,” he said, laughing, “life is short. I could spend all my time, day and night, just working with that alone. It’s an immense project.”

————–

Many, many thanks to Ron Richards, whose generosity astounds me.  I am profoundly grateful for his time, his patience with my “volley of questions” and his fascinating descriptions.  It is always a pleasure and an honor connecting with him!

A sincere thank you to Bruce Williams for prompting this post!

**The name and location of this cave were intentionally left out for security reasons.

[Image of the Indiana State Museum, Getty Images]

An Ice Age Wonderland – Yukon Paleontology, Part 3

In 2004, scientists in the Yukon discovered a rare and surprising remnant of the Pleistocene: an Ice Age meadow. And some of the grass, although at least 30,000 years old, was STILL GREEN.

Gold bottom turf_30,000 year old grass below ash

[Fossil grass below layer of tephra at Gold Bottom Creek, part of a 30,000-year-old grassy meadow discovered in 2004, from Ice Age Klondike, courtesy of the Government of Yukon. To see a picture of some of the green grass, please see page 33.]

 

In Ice Age Klondike, Dr. Grant Zazula and Dr. Duane Froese explain that this layer—at least 40 meters long–was buried by volcanic ash, or ‘tephra’.

 

30,000 year old bed of Dawson tephra

[The layer of tephra is the whitish colored portion toward the bottom; 30,000-year-old tephra, image courtesy of the Government of Yukon.]

 

Few places in the world offer us such a concentrated wealth of information about the Pleistocene, and the Yukon is one of them.

“There are a lot of common animals like woolly mammoths and bison and horses that we find all the time,” Dr. Zazula said. “But it’s really exciting when we find the bones or the fossils of the rare species, things like camels, or short-faced bears, or lions. Probably for every 500 bones we find, we might find one bone of a carnivore.”

Susan Hewitson in field with lion humerus

[Susan Hewitson holding an Ice Age lion humerus, courtesy of the Government of Yukon.]

lion mandible

[Ice Age lion mandible, courtesy of the Government of Yukon.]

“I think that one of the things that has really been exciting for me,” he offered, “is that, in the last 10 years, the field of ancient genetics has really taken off in terms of being able to extract DNA from Ice Age bones, then study the details of evolution and how these animals are related to one another.”

beth shapiro with horse jaw 2

[Geneticist Beth Shapiro examines a partial upper jaw bone of a Yukon horse emerging from the frozen mud at Quartz Creek, from Ice Age Klondike, courtesy of the Government of Yukon.]

 

fossil horse jaw

[Yukon horse jaw uncovered by placer miners on Quartz Creek near Dawson City, from Ice Age Mammals of Yukon, courtesy of the Government of Yukon.]

 

“[The Yukon is] one of the best places in the world to do that because of the bones being found in permafrost. [There are] so many Ice Age bones that are being found, and they’re really accessible.

“So we work really closely with the geneticists all the time; we’re working on all kinds of different projects together. It’s nice to be able to collaborate with a field like that and make fossils from the Yukon available for study.”

Geneticist Mathias Stiller - tusk - BonesnBugs.2010.TKuhn_082

[Geneticist Mathias Stiller with tusk found in the muck at Quartz Creek, courtesy of the Government of Yukon.]

This author writes from an area within the United States that is fossil-poor (finding one mastodon tooth is an enormous deal, and most years pass without a single reported fossil). In comparison, the amount of fossil bones found in the Yukon staggers the imagination. But that is not all that the Yukon has to offer.

Even those not generally interested in paleontology get excited when they see or hear about mummified Ice Age animals. There is something so much more dramatic, that much more intriguing, about seeing an extinct animal in the flesh.

Dr. Zazula was frank about being slightly envious of Siberia’s wealth in that domain. Outside of Blue Babe, a steppe bison carcass found in Alaska, the most spectacular mummified animals have been found on the other side of the world.

And yet, one cannot ignore that mummified remains—partial or otherwise—are also an exciting part of Yukon paleontology.

mummified ferret

[40,000-year-old mummified black-footed ferret discovered by the McDougall family’s dog, Molly, at their placer gold mine on the Sixtymile River, from Ice Age Klondike, courtesy of the Government of Yukon.]

 

One of the more remarkable finds was a partially mummified horse, discovered by Lee Olynyk and Ron Toews in a gold mine.

26,000 year old mummified Yukon horse (Equus lambei) foreleg recovered a....Canadian Museum of Nature

 

[26,000-year-old mummified horse (Equus lambeii) foreleg showing preserved hair, hide and muscle tissue, recovered at Last Chance Creek, Yukon, from Ice Age Mammals of Yukon, courtesy of the Canadian Museum of Nature.]

 

horse tail

[Image of mummified horse tail, courtesy of the Government of Yukon.]

 

Internal organs as well as a significant portion of the hide (with mane and hair!) were recovered. One can see this at the Yukon Beringia Interpretive Centre, the museum in the capital city of Whitehorse.

 

Also exciting, but from the neighboring Canadian Territory, was a discovery in the village of Tsiigehtchic. Dr. Zazula participated in uncovering this animal.

“[We excavated] a good portion of a carcass and a skeleton of a steppe bison, which turned out to be about 12,000 years old. There was still a bunch of hair and stomach and intestines and some of the limb bones were still articulated with muscle.”

He wrote about this in more depth with Dr. Beth Shapiro (image above) and several other colleagues in 2009. Not only remarkable for its level of preservation, this was also the first reported mammal soft tissue from the Pleistocene in “the glaciated regions of Northern Canada.

fossil steppe bison skull quartz creek

[Large fossil steppe bison skull found Quartz Creek, from Ice Age Klondike, courtesy of the Government of Yukon. Not the same bison fossil mentioned above.]

Then in 2010, Derek Turner and Brent Ward found the “oldest reliably dated” Western camel fossil found in what was once Eastern Beringia. As mentioned in previous posts, Beringia was the area that covered most of Siberia, Alaska and Yukon when the land was connected in the Pleistocene.

Derek Turner, Brent Ward and Dr. Zazula explain, in their paper about this discovery, that North America was once home to possibly six different species of camel. (There appears to be some dispute about whether six distinctly separate species existed.) And, contrary to what one might expect, Camelops—the camel genus—originated in Central Mexico.

ice age camel metatarsal (foot bone)

[Ice Age camel metatarsal (foot bone), courtesy of the Government of Yukon.]

For someone who has never participated in the excavation of either a mummified animal or fossils from permafrost, it was interesting to learn that there is a distinct smell when working with the muck.

Monitoring Dominion Crk (1)

[Placer gold mining monitor, Dominion Creek, courtesy of the Government of Yukon.]

“The only thing that’s kind of similar is the smell of a barnyard. But this is a barnyard from 30,000 years ago, and it’s from mammoths and horses and camels. All this rotten stuff that was [once] animals and plants that died a long, long time ago, frozen in the ground, and it’s now starting to thaw.”

The ever-growing research and discoveries from the Yukon paint a vivid picture of a by-gone era. It is, perhaps, the closest thing to a window into the Ice Age that we have.

When asked if there was anything that had not yet been found that he would be thrilled to find, Dr. Zazula didn’t hesitate: a woolly rhinoceros.

“We know that woolly rhinoceros are, so far, only found in Siberia,” he said, explaining why this would be so significant. “They extended all the way to the Bering Sea essentially, but they seem to never have crossed Beringia into North America. There is no fossil record of Ice Age rhinos here. But if they did [cross Beringia], that would be pretty amazing to find one of their fossils.”

Dinosaur enthusiasts, however, may be disappointed.

“In the Yukon, there’s almost no record of dinosaurs or Mesozoic fossils at all. I’ve been working with colleagues over the past handful of years, trying to find dinosaur deposits. But there’s no record of dinosaurs here except for a few handful of things. So, it’s not really [the place to be] if you’re interested in dinosaur paleontology. And that’s fine for me because then I don’t have to get involved in dinosaur work.”

“The Ice Age,” he continued, “is definitely what I’m interested in.”

Zazula with horse skull selfie

[Paleontologist Grant Zazula with Ice Age horse skull, discovered this past summer, courtesy of the Government of Yukon.]

Dr. Zazula began grad school in Alberta studying anthropology. Initially, he wanted to become an archaeologist. His undergrad studies focused on Arctic people and research. A strong theme, he explained, centered on the first humans to cross the land bridge into what is now North America.

“I found myself becoming more interested in the environments that those first peoples in North America were encountering,” he mused. “Instead of just trying to study the people themselves, [I wanted to understand] them in more of a wider geographic or environmental context. So, I switched gears during my grad school days from anthropology into biological sciences.”

After doing paleoecological work in the Old Crow region of the Yukon, Dr. Zazula was invited to join a group of researchers working in the Klondike.

“We started doing fieldwork at these gold mines, and we kept on running into these strange balls of hay frozen in the frozen mud, in the Ice Age sediments. And we didn’t really know what they were at first.”

So he contacted Dick Harington—a well-known paleontologist within Canada for his decades of work with fossils and gold miners in the Yukon. Dr. Harington thought they might be Arctic ground squirrel nests, and in further conversation, explained that they had not yet been a topic of study. In other words, not much was known about them.

25,000 year old fossil arctic ground squirrel nest at Quartz Creek, summer 2005 (photo by G. Zazula)

[Fossil nest of an Arctic ground squirrel, 30,000 years old, found at Quartz Creek in summer 2005, from Ice Age Klondike, courtesy of the Government of Yukon.]

“Over the first summer of fieldwork, I think I collected almost a hundred of these ground squirrel nests. And what was really cool about it is that the group that I was working with specialized in glacial stratigraphy [and] using volcanic ash beds to date sediments.

“Because they knew the age of these different volcanic ash layers that are found in the sediment, we could actually place these ground squirrel nests in different points in time in the past. We were able to develop sort of a time series of these Arctic ground squirrel nests.

“[Over] the next four years, I picked apart Arctic ground squirrel nests that [dated] between 20,000 and 80,000 years old or so.”

 Nest with squirrel skull

 

[Arctic ground squirrel nest, courtesy of the Government of Yukon.]

These nests are also known as “middens.” In his paper on the topic, Dr. Zazula and his colleagues describe these underground Ice Age homes. What these middens revealed, not just about these specific Ice Age animals, but about the Pleistocene environment at the time, is incredible.

Contained within these middens were ‘caches’ of food—seeds and plants from the area. These tiny plants give scientists a much better understanding of the climate and environment thousands of years ago.

squirrel nest - quartz creek

[Arctic ground squirrel nest, courtesy of the Government of Yukon.]

 

squirrelnest - cache

 

[Arctic ground squirrel nest, cache highlighted by author, per the paper on this subject.]

 

“I think we’ve identified over 60 different plant species in them, and I wasn’t expecting that at all.”

In addition—and much to this author’s surprise–they found fossil insects, including beetles.

“Fossil Pleistocene beetle remains are actually quite common in sediments,” he said. “And they’re actually pretty useful for climatic reconstructions, because most beetles have a very narrow temperature or climatic envelope that they can live within.”

Squirrel nest - DawsonFieldwork_2011_TKuhn_254

 

[Arctic ground squirrel nest, courtesy of the Government of Yukon. Can you find the squirrel skull?]

 

[Extant Arctic Ground Squirrel (Spermophilus parryii) hibernating in burrow, Fairbanks, Alaska; Getty Images]

 

In all of Dr. Zazula’s papers, one can see scientists from a variety of fields as co-authors or in the acknowledgements for their help with research. This was reiterated in our phone conversation: he is uniquely positioned as Yukon paleontologist to provide Ice Age material for a wide-range of study to a wide-range of fields.

“Especially with the Pleistocene,” he explained, “there are so many interconnected aspects of research. You need to have a geologist around. And then, in terms of putting the big picture together, you want to have someone that can reconstruct plant fossils. If you’re just doing it alone, you wouldn’t get much of the [big] picture anyway.

“So we’ve really kind of developed this way of doing things as a team.”

Morehouse, Zazula and Stiller

[Archaeologist Jana Morehouse, Paleontologist Grant Zazula and Geneticist Mathias Stiller, image courtesy of the Government of Yukon.]

“To me, it’s all so interconnected: the geology, the ecology and the mammals and then the archaeology. You might as well work together to try to accomplish goals, and that’s how we’ve done it. It’s been pretty successful.”

“And,” he added, “it’s a lot more fun that way anyway.”

Beth Shapiro_withHorse

[Geneticist Beth Shapiro with Ice Age horse jaw, image courtesy of the Government of Yukon.]

“Prior to the Yukon government establishing the paleontology program, all of the fossils that were being collected went back to Ottawa for the National collection and the National Museum. So most of the material that has ever been collected from the Yukon is actually not here. It’s in Ottawa.

“The Yukon government decided in the mid ‘90’s that they would like to establish its own program in Arctic archaeology and paleontology. Since that time, fossils collected here, stay here. And the position [of Yukon paleontologist] was created to oversee that.”

It’s a position he’s held for the past eight years, and one can hear his genuine enthusiasm for it in his voice.

“It’s a great job,” he stated. “Sometimes I’m shocked that I get paid to do this. It’s pretty exciting.”

Over the years, Dr. Zazula has been featured in some of the most prominent global media. Some of those include NPR, the CBC, the NY Times, and the National Post. This past summer, he was filmed with paleontologist Dick Mol from the Netherlands by a German documentary team. That documentary has been aired in Europe since this past December.

Dick Mol and Grant Zazula - Yukon

[Paleontologists Grant Zazula and Dick Mol, photographed by Florian Breier, the director of the German documentary; image courtesy of Dick Mol.]

Not everyone, regardless of their profession, is as comfortable with media or journalists.

“I think there are a lot of people that stay in labs and put their heads down and don’t really interact with the media, but I think it’s really important,” he said.

[I]t’s one thing that’s never taught: how to conduct interviews or how to take your scientific work and present it or make it relevant to the public. And I think that’s a real problem, because if you are a practicing scientist after graduate school, you’re undoubtedly going to do research that attracts interest, and if you don’t have the ability to speak about it or to present it, you lose a lot of traction. In a lot of regards, science is kind of a big competition. It’s like a big science fair. If you don’t produce results and attract attention, you won’t continue to be funded. You can be an excellent scientist and sort of fade away if you don’t have the ability to attract people’s attention.

“I work for [the] government, where we’re publically funded by tax dollars. [F]or some people, [paleontology] might not seem very relevant for society. Still, I think it’s pretty important whenever we have something new to talk about, in terms of new results or new and interesting things, we should make sure it gets out to the public through media.

“Politicians are the people that decide if these programs continue to be funded. And if they see that there’s a lot of media interest and a lot of people learning because of it, then they’ll definitely keep funding these kinds of programs. And I’m grateful that they continue to do so.”

paleoecologist Rolf Mathewes from Simon Fraser University_bison jaw and mammoth tooth

[Paleoecologist Rolf Mathewes from Simon Fraser University,courtesy of the Government of Yukon. Can you pick out the mammoth tooth?]

Explaining the reasons for his fascination with the Ice Age, Dr. Zazula said, “Dinosaur paleontology doesn’t really tell us much about the modern environment. If we’re interested in what we have today and how it’s changing because of, say, climate change, or environmental change, we’re not going to get much information about environmental processes by studying dinosaurs.

The study of the Ice Age, [however], is how the modern world came to be.

“When you think of tens or hundreds of thousands of years ago, it may seem like a long time ago, [but] it’s just a geological instant. And in that short time period–in that geological instant–the changes that have happened to result in what we have here today are amazing!

“To think of giant elephants and lions running around North America: it’s such a different world. And yet so many aspects of that world can inform us of what we’re dealing with today.”

sixtymile mammoth 1

[Image of mammoth skull found by Hawk Mining along the Sixtymile River, courtesy of the Government of Yukon.]

 

——————–

This trilogy of posts on the Yukon–with all of the beautiful images and the fascinating information they contain–could not have been possible without the generosity of Dr. Grant Zazula.  He is an adept and engaging speaker; the Yukon is incredibly lucky to have him at the helm of the paleontology program!  Once again, and with great sincerity, a Mammuthus columbi-sized THANK YOU to him.

This trilogy would not have occurred without the great generosity and wonderful thoughtfulness of Dick Mol, who is a wonderful, wonderful person.  With great sincerity, I wish him, too, a Mammuthus columbi-sized THANK YOU!

——————–

If you haven’t already checked out these publications by Grant Zazula, Duane Frose and Tyler Kuhn, please do! They are available online:

Other articles referenced:

 

Yukon Paleontology Program: http://www.tc.gov.yk.ca/palaeontology.html

Yukon Beringia Interpretive Centre: http://www.beringia.com/index.html

Terra X – German Documentary: Mammuts – Stars der Eiszeit, http://www.zdf.de/terra-x/mammuts-ikonen-der-eiszeit-35507636.html

The Treasure in Gold Mines: Fossils! – Yukon Paleontology, Part 2

I admit to having preconceived notions of what it means to find fossils and to mine for gold.  It never occurred to me that these two occupations might be interconnected.  Nor would I have ever described the image below as what it actually is: placer gold mining.

Placer Gold Mining - Monitor

 [image of a water monitor, placer gold mine in Quartz Creek, courtesy of the Government of Yukon. Can you find the rainbow?]

That water jet is called a ‘monitor’, and it slowly melts the permafrost, exposing the alluvial gold from the gravel below.

It also reveals fossils.

“Since the beginning of the Gold Rush, people have been finding Ice Age fossils there,” explained Dr. Grant Zazula by phone.

The Gold Rush, an event that peaked in 1898, brought people from all over the world to the Klondike area of the Yukon.  It was once solely the home of several indigenous cultures, including the Inuit, Han, Tagish, Tlingit and Tutchone. But the hope of finding treasure—in an industry that required inexpensive equipment (a pan, a rock pick)—brought thousands to an area that most would consider inhospitable.

 

 

 

gold miner Gerry Anhert

[image of gold miner, Gerry Ahnert, courtesy of the Government of Yukon]

One of the techniques used to find gold at that time was borrowed from California mining: water monitors.  Monitors were also relatively inexpensive and highly effective.

Back then, as now, these monitors revealed not only gold, but a wealth of fossils.

Assistant Palaeontologist Elizabeth Hall organizing a days collection of bones in the tent at our field camp near Dawson city

[image of Paleontologist Elizabeth Hall organizing a day’s collection of bones at the field camp near Dawson City, courtesy of the Government of Yukon]

“I’m always pretty fascinated by these stories immediately post-Gold Rush of people finding mammoth skulls,” said Dr. Zazula.

One can see a number of black-and-white images of these and other fossil finds in Ice Age Klondike, written by Dr. Zazula and Duane Froese.  Finds such as this prompted museums to send representatives out to the region to bring back fossils for their collections. One such expedition in 1907 and 1908 is detailed in the Bulletin of the American Museum of Natural History in NY.

“Without the gold mining, these fossils would never be found,” Dr. Zazula continued, referring to today’s fossil discoveries. “They’re using heavy equipment and other types of equipment to move this frozen ground because [it] is essentially locked in permafrost that wouldn’t be accessible without the gold mining.”

Upper section

Looking upstream at 2011 stripping operation

Unsampled tehpra (inaccessible) visible in wall of monitoring drain

TK-11-03TK-11-06

QCreek mine - LOVE THIS - monitor and permafrost - DawsonFieldwork_2011_TKuhn_029

 [images of gold mines near Dawson City, courtesy of the Government of Yukon]

Melting the frozen ground with these jets isn’t as damaging to fossils as one might imagine. Dr. Zazula described a process in which fossils are slowly removed from the heights of the muck—the frozen silt—and slide down into the valleys below.  When remarkable fossils are seen by paleontologists, the miners always accommodate them, enabling Dr. Zazula and his colleagues to excavate them manually.

Arctic Ground Squirrel fossil skull

 [fossil Arctic Ground Squirrel skull emerging from the muck, image courtesy of the Government of Yukon]

Zazula sampling squirrel nest

[Dr. Grant Zazula sampling frozen sediment along a vast wall of muck at Quartz Creek, courtesy of the Government of Yukon]

 

It’s an incredible partnership, one that began in the 1960’s with Dr. Richard Harington of the Canadian Museum of Nature. Dr. Harington made annual summer trips to visit the miners and discuss their fossil finds.  It is a tradition that Dr. Zazula and the other two Yukon paleontologists before him have maintained.

But consider the expanse of the Yukon Territory.

Land near Dawson City

[image of land near Dawson City, courtesy of the Government of Yukon]

And consider that, as Dr. Zazula stated, “[t]here are 100 active gold mines, give or take a few dozen here or there. And virtually all of them produce Ice Age fossils.  So in a summer, we can collect 5,000 specimens. There’s a lot of material coming out of the ground, and we’re trying to recover it as much of it as we can. It’s almost industrial-scale paleontology.”

This gave me pause: one Yukon paleontologist in the entire Territory, who—in addition to keeping in touch with about 100 mines in the Klondike—is responsible for all of the other fossil discoveries and research of the area.

“Prior to 3 years ago, it was really a one-person operation and that was me,” he admitted.

With the acquisition of funds, however, Dr. Zazula now has two assistants in the field: Elizabeth Hall and Susan Hewitson.

Elizabeth, Dick, and Susan with fossil Bootherium skull

[image of Elizabeth Hall, Dick Mol holding a fossil Bootherium skull, and Susan Hewitson, courtesy of the Government of Yukon]

They have established a field camp near Dawson City in close proximity to the gold mines. This enables them to be in daily contact with the miners in the short mining season—the end of May through October.  Dr. Zazula described this work as driving on back roads to the various mines, getting to know the miners and collecting the fossils released from the permafrost.

Elizabeth Hall recording a collection of bones at a gold mine

 

[image of Elizabeth Hall recording bones at a gold mine, courtesy of the Government of Yukon]

“Since we’ve done that, our collection has just exploded in terms of the quantity of material that we’re finding.  But it also really establishes and strengthens the relationships that we have made with the gold miners as well.”

Dawson City

 [Dawson City, the previous capital of the Yukon Territory until 1953; At the height of the Gold Rush, this town consisted of numerous wooden buildings and a sea of canvas tents behind them; image courtesy of the Government of Yukon]

“[The] program really hinges on [these] two people,” Dr. Zazula wrote. “Elizabeth Hall oversees most of the field work in the Klondike and is the collections manager, and Susan Hewitson [is] a field technician in the summer months.

“They do most of the work to collect the fossils, clean the fossils, identify the fossils, catalog the fossils and organize the database. This really frees up my time to write, do research and other outreach work.”

Elizabeth Hall holding baby mammoth

[image of Elizabeth Hall holding a baby mammoth tooth, courtesy of the Government of Yukon]

Elizabeth, Susan and her husband Alex collecting bones in 2012

[image of Elizabeth Hall, Susan Hewitson and her husband collecting fossils, courtesy of the Government of Yukon]

 

“Elizabeth started her as a summer student assistant about 10 years ago, and we finally created a full time position for her 3 years ago. We were also students together at Simon Fraser University. She is in the middle of completing a masters degree in Earth and Atmospheric Sciences at University of Alberta; her thesis work is on fossil microtine rodents from Old Crow, Yukon.”

Elizabeth Hall in field

[image of Elizabeth Hall, courtesy of the Government of Yukon]

“When it’s good for gold, it’s a good time to be an Ice Age paleontologist in the Yukon because there’s so much material that’s coming out of the ground.”

Tyler Kuhn

 [Paleontologist Tyler Kuhn with a mammoth tusk found at a placer mine in Dawson City, Yukon; courtesy of the Government of Yukon]

 

Again, an enormous thank you to Dr. Grant Zazula for his fascinating insight and most generous time.  

Thank you, again, to Dick Mol.  

And thank you to all of the gold miners who enable Dr. Zazula, Elizabeth Hall and Susan Hewitson to conduct their research and collect fossils!!

Dick Mol and Grant Zazula - Yukon

[image of Grant Zazula and Dick Mol, holding a steppe bison skull; taken by Florian Breier, courtesy of Dick Mol]

———————

Yukon Paleontology Program: http://www.tc.gov.yk.ca/palaeontology.html

Yukon Beringia Interpretive Centre: http://www.beringia.com/

Publications and articles referenced:

Exciting New Info About Mastodons and Humans – Yukon Paleontology, Part 1

“Good morning!”

It’s not just a greeting; it sounds like a proclamation.

The voice on the other end of the phone is deep, melodic, and—as our conversation progresses—punctuated with moments of laughter.  We have been discussing paleontology in the Yukon, and with each new detail, I begin to wonder why this territory is not making regular international headlines.

Dr. Grant Zazula’s work is fascinating, and it is neither a short phone call nor the only communication we’ve exchanged. And yet, it is all that I can do not to encourage him to keep going, long after social decorum dictates that he has been more than generous with his time.

Dr. Zazula and mastodon leg

[image of Dr. Grant Zazula with a mastodon ulna, part of the Earl Bennett mastodon, courtesy of the Government of Yukon]

Dr. Zazula is the Yukon paleontologist, a job that has only existed since 1996. His own tenure began in 2006.  With an office in Whitehorse, the capital of the territory, his work oversees an expanse of Canada that abuts Alaska.  It is a land of dramatic beauty, where colors dance in the sky and mountains tower in silent grandeur.

His most recent paper, co-written with 14 other people, made news throughout the world and continues to attract media attention. In it, the scientists present data that completely overturns previously believed information about extinct animals and the impact that humans may or may not have had upon their survival.

“[T]here were two radiocarbon dates in the literature from Yukon mastodons,” he explained in an email. “One that was ~18,000 and the other 24,000 years old.”

“Based on analysis of the paleoecology, that was a time when steppe-tundra grasslands covered Alaska, Yukon and Beringia. There were probably no trees, few shrubs and almost no standing water. It was very cold and, especially, dry. This seemingly is not good mastodon habitat. So either the dates were incorrect, or our understanding of mastodon ecology, behavior and adaptations need[s] to be revised.”

Various species of mastodon once existed throughout the world.  Although their fossils look elephantine, they are not believed to be direct ancestors of today’s elephants. They are, however, part of the same umbrella mammalian group: the Proboscidea (so-named for the trunks possessed by many—but not all–of their members).  In North America, that group contained the American mastodon (Mammut americanum), the woolly mammoth (Mammuthus primigenius), and the Columbian mammoth (Mammuthus columbi).

Cohoes mastodon

 [image of the Cohoes mastodon, NY State Museum, Albany; taken by the author]

Mastodons tended to have straighter tusks and were shorter than their mammoth cousins. They also ate hardier vegetation, food that required a much different tooth structure than mammoths.

ISM - Mastodon tooth

[image of mastodon tooth, courtesy of the Indiana State Museum]

ISM - Mammoth tooth

[image of mammoth tooth, courtesy of the Indiana State Museum; for more info about the differences between mammoths and mastodons, see this post.]

Parts of Siberia, Alaska and the Yukon were once connected in an area known as “Beringia.”  The Bering Strait did not yet exist, enabling animals and eventually the first humans to cross into our continent.  It is believed that humans arrived in what is now North America about 14,000 years ago.

And this is where the research of Dr. Zazula and his colleagues becomes particularly important.

Prior to their paper, one theory to mastodon extinction laid the blame upon first humans: it was proposed that they overhunted these animals.

Sampling 36 fossils and presenting 53 new radiocarbon dates, Dr. Zazula and his colleagues found that mastodons within Alaska and the Yukon were much, much older than the originally published dates.  In other words, their research suggests that mastodons from what was once Eastern Beringia were no longer present when the first humans appeared.

The path to this remarkable research did not happen overnight.

The foundation appears to have been laid by two different events: by the chance meeting of Dr. Zazula and a gold miner, and later, by the PhD work of a graduate student.

If one reads the acknowledgements on the aforementioned paper, Dr. Zazula references Earl Bennett as both the donor of a partial mastodon skeleton and his inspiration to learn more about mastodons within the Yukon.

“Earl is a great Yukoner,” Dr. Zazula wrote when asked about this. “He mined for gold underground in the winters with a pick and shovel, decades ago. He worked on big gold dredge machines. And, he loves paleontology.

“While mining, he made collections of Ice Age bones that were just left around the mining camp or were encountered while mining. He eventually amassed an amazing collection.

“In the early 1970’s a gold dredge on Bonanza Creek hit a skeleton of a mastodon. An incredibly rare find! Someone collected it and was looking to sell it. So, Earl bought the skeleton just to make sure that it never left the Yukon. He had it in his garage for decades.

“One day a mutual friend introduced me to him in a coffee shop, about a year after starting my job [as the Yukon paleontologist]. He said that he had a mastodon skeleton and wanted me to see it. I ‘corrected’ him, saying that it was more likely a mammoth, because we almost never find mastodons in the Yukon. He assured me he know the difference and said he would see me tomorrow at my office.

“The next day he backed his truck up and in it was a partial mastodon skeleton. I couldn’t believe it. There were several postcranial bones, some vertebra, scapula, parts of the skull and parts of the mandible with teeth. It was amazing. I wanted to find out how old it was, and that was one of the inspirations for this project. Earl is a good friend now and big supporter of our research.”

Bennett mastodon skeleton

[Paleontologist Grant Zazula with a partial American mastodon (Mammut Americanum) skeleton found on Bonanza Creek and donated to the Yukon fossil collection by Earl Bennett, from Ice Age Klondike, courtesy of the Government of Yukon]

That partial skeleton was indeed one of the many fossils sampled for the paper.

Dr. Jessica Metcalfe, one of the co-authors, also prompted this research when conducting work for her PhD.

“[S]he was doing a project looking at stable isotope ecology of mammoths and mastodons in various places in North America,” said Dr. Zazula.

Jessica Metcalfe with mammoth bone

[image of Dr. Jessica Metcalfe with mammoth bone, courtesy of the Government of Yukon]

Her work included Yukon fossils that were sent to the lab at the University of Arizona to be radiocarbon dated.   Those dates turned out to be older then 50,000 years old.

“So that’s what got me thinking,” he continued, “‘well, maybe those original published dates are wrong.’”

“The first step was to re-date [the specimens that had produced the original published dates]. The new dates turned out to be >50,000 years. So we knew there was a problem with the previous dates. We figured then we should date as many as we could get our hands on.”

This lead Dr. Zazula to connect with Dr. Ross McPhee, another co-author.

“I got in touch with him early because he oversees collections at the American Museum of Natural History, [and] he has a big interest and lots of experience working on Ice Age extinctions. [H]e’s an excellent writer and really kind of kept us going with some of the writings. He was really integral to keeping things together.”

The paper eventually involved a total of 15 people.

“I feel pretty strongly that if you worked on it and contributed to it, then you should be considered an author,” Dr. Zazula stated.  “So it ended up being a long list.”

One of the first aspects their paper addresses is the reason behind why the original published dates are incorrect: the dating analyses were contaminated by fossil conservation methods.

“Humic acids in soils can be absorbed by the bones and teeth and chemically bind themselves to the collagen,” he wrote, explaining further. “So, modern ‘young’ carbon in those acids basically contaminates the ‘old’ collagen in the ancient fossil. And, it can be tricky to remove.

“The same with consolidants in museums. Varnish, glue, and other substances to preserve fossils can be absorbed into the bone and chemically bind with the collagen in the bone. These substances probably contain young, modern carbon which messes up the radiocarbon dating measurements.”

When asked whether museums continue to use the same preservation products that contaminated the dates, he wrote, “Yes, for sure. The thing is now museums keep better records of what they use. Many of the fossils we dated were collected in the 1940’s or at least several decades ago. Museums were not that vigilant about keeping detailed records on those things then. Also, they seemed to put preservatives on everything. Now, at least if we know what was put on it, the chemistry can by developed to remove it. Most of the common preservatives now are soluble in alcohol or acetone and can be dealt with. The problem is when they are unknown.”

We discussed this further by phone.

“One thing about Alaska and the Yukon,” he said, “is that the Ice Age bones that come out of the ground are so well preserved because of the permafrost. In other localities, say, the deserts of the American Southwest or the Great Basin or the Plains, where bones have been out in the sun and [are] dry and hot, they [sometimes] fall apart really easily when they come out of the ground. They need to be glued and consolidated with these various types of museum products.

“So you kind of have to weigh the different values.

“Say if it’s a specimen that’s already been radiocarbon dated, and it starts to slowly disintegrate, well, then you kind of have to intervene or else you’re just going to end up with a box of dust and broken bone. You have to decide whether the importance is more with display or preservation of the morphology versus needing to radiocarbon date or other types of analysis.

“[Y]ou have to look at the pro’s and con’s of whether the sampling [for radiocarbon dating] will ruin the specimen or not, and what is the potential information that can be gained by doing it. To me, I feel that having a research collection [in the Yukon], it’s all about research and learning new things from these specimens.”

Ultimately, I wondered whether Dr. Zazula expected the results he and his colleagues uncovered.

“I wasn’t quite sure,” he answered. “I had the gut feeling that these previously published radiocarbon dates were probably wrong. It didn’t make a lot of sense ecologically to have mastodons living in the far North when it was seemingly habitat they couldn’t live in: habitat with grassland and cold, dry steppe tundra conditions, no trees and very few shrubs.

“But there [was] also a part in the back of my mind that thought, ‘well, if those [previously published dates] were right, that’s maybe even more interesting because they are telling us something about mastodons and their behavior and their adaptations that we didn’t know before.’”

————

It was a great honor and pleasure to connect with Dr. Grant Zazula! Not only patient with my myriad questions, he is an adept and fascinating ambassador for the Yukon. A Mammuthus columbi-sized thank you to him!

A Mammuthus columbi-sized thank you to Dick Mol, as well, who is the reason behind this post!

Dick Mol with horse skull

[image of Dick Mol with fossil horse skull, found near Dawson City, Yukon; courtesy of the Government of Yukon]

Yukon Paleontology Program: http://www.tc.gov.yk.ca/palaeontology.html

Articles and publication referenced:

 

Listen to Dr. Zazula discuss his paper on the CBC’s Quirks & Quarks: http://www.cbc.ca/radio/quirks/quirks-quarks-for-dec-6-2014-1.2864605/mastodons-made-an-early-exit-from-the-north-1.2864634

 

[REPOST] The Mammoth Site and Dr. Larry Agenbroad – Renowned Paleontologist

Ask Dr. Larry Agenbroad what his most exciting discovery as a paleontologist has been, and his response is: “Too many to select just one.”

He cites, among the top three, discoveries with which you might already be very familiar:

• the most complete pygmy mammoth skeleton found to-date,

• an 11,000 year-old bison kill site,

• and the Jarkov mammoth in Siberia.

These discoveries—like his work—are from all over the world.

Dr.LarryAgenbroad

(Image of Dr. Agenbroad and fossil replica, courtesy of Dr. Larry Agenbroad. If you, like me, thought this was a saber-toothed cat fossil, guess again! See the end of the post for more info*.)

Pygmy mammoths are the smallest of the known species, and their remains have been found on Wrangel Island (off of Russia) and on the Channel Islands (off of California). It is thought that their size evolved from their isolated existence on islands, an environment that would not be able to support multiple Columbian or woolly mammoths.

Dr. Agenbroad led the team that excavated the most complete pygmy mammoth skeleton yet found. A cast of the fossil can be seen at the Channel Islands National Park Visitor Center, and a replica of this fossil in-situ is in the Santa Barbara Museum of Natural History. The SBMNH’s website states that Dr. Agenbroad has found 66 more fossil sites on the islands.

Nebraska is home to the Hudson-Meng Bison Kill Site. Named after Bill Hudson and Albert Meng, who found it by accident in 1954, it eventually produced almost 600 separate bison fossils. These fossils represent a species of bison that does not exist today. Dr. Agenbroad began excavation here in the 1970’s. Different theories exist regarding why so many 11,000 year-old remains of the same species are in one place.

You can see Dr. Agenbroad in the Discovery Channel documentary, “Raising the Mammoth”. It details the discovery and research of the Jarkov mammoth in Siberia. Dr. Agenbroad is among other well-known paleontologists who worked together on this remarkable find: an enormous mammoth encased in ice. That documentary also gives you a peak into the Mammoth Site in Hot Springs, South Dakota, where he is the Chief Scientist and Site Director.

Recently accredited by the American Alliance of Museums, the Mammoth Site houses the largest collection of mammoth fossils in the United States. It is open to the public year-round.

Their website lists that they recently found the 61st mammoth fossil this summer; 58 of which are Columbian mammoths, 3 are woolly mammoths.

Woolly mammoths may dominate mainstream imagination, but the species that lived throughout the U.S. was actually the largest (and possibly the least hairy) representative of that species: the Columbian mammoth.

The Mammoth Site, a growing museum on 8.5 acres of land, is built over the initial excavation area. And that area was originally intended as part of a housing development. Construction came to a halt in 1974 when mammoth fossils were found.

Joe Muller, COO/Business Manager of the museum, describes the initial structure built in 1975 as a modest plywood construction. An addition was made to that structure in 1976 and 1978.

“That [addition] remained over part of the site so people could come in and look a little bit at some of the fossils,” he said in a phone interview.

“[Researchers] would excavate outside (there was a self-imposed hiatus from excavating for 1980-1982 and 1984-1985 until a building could be constructed over the site) until in 1986, the building was built over the sinkhole area. Then in 1990 we enclosed a lobby area with a gift shop.”

Today, there is an additional 4000 square feet of enclosed exhibit space, plus 8,000 square feet for laboratory, bone storage, research library, offices, bathrooms and storage (which opened in May 2001).

And–to give readers an additional sense of the size of the museum space–there is a crane.

“We have a crane in the sinkhole area,” he continued, “so that we can remove the fossils, take them to the ‘mammoth elevator’, and then take them to the basement to the laboratory work on.”

The sinkhole is the reason Hot Springs has such a wealth of fossils. As described both on the museum’s website and in the acclaimed book by Adrian Lister and Paul Bahn (Mammoths: Giants of the Ice Age), the area known as “the sinkhole” was created about 26,000 years ago. It was a 65-foot-deep pond framed by steep banks, with an even deeper section through which flowed warm water. Warm water and vegetation are believed to be the temptations that caused mammoths to venture into the pond. Getting out of that pond—or rather, the inability thereof–is believed to have been the cause of their death.

The many fossils that remain today—mostly young male mammoths—were eventually covered and preserved by mud and sediment over thousands of years. A number of these fossils remain in-situ and available to the public at the Mammoth Site. Excavation within the site continues each year, and it is an opportunity for which one can apply—paleontological background or not. Muller advises that one can apply “to come and excavate for five days with Roads Scholars (May & October), then EarthWatch volunteers come for two two-week sessions; basically the month of July.” Amongst the Ice Age fossils found are camel, llama, prairie dog, a giant short-faced bear, wolf, and numerous invertebrates.

The book Mammoths: Giants of the Ice Age lists the surprising fact that mammoth hyoid bones and bile stones have been recovered here.

Dr. Agenbroad explained that “a hyoid bone is a set (5) of bones that support the tongue. Often only one of the set is found.” When asked how something so seemingly small such as a bile stone could be found and identified, he said that is “a non-osteological specimen”, and that they use “chemical analyses to identify them, comparing and contrasting them to modern elephant bile stones.”

Dr. Adrian Lister, one of the authors of the aforementioned book, is listed as one of the former “Visiting Scholars” to the Mammoth Site. Designed and implemented by Dr. Agenbroad, the Visiting Scholar program invites researchers to study at the site.

“I wanted to ‘cross-pollinate’ ideas, methods, and theories with international experts,” wrote Dr. Agenbroad in an email. In response to whether other sites engage in similar activities, he continued, “It is rare for other sites to invite and support a visiting scholar (usually due to budget restrictions).”

The impressive list of “Visiting Scholars” also includes, among others, Adriana Torres of Mexico; Dr. Laura Luzi of Italy; Dr. Daniel Fisher (now of the University of Michigan, one of the many researchers who worked on “Lyuba”, the best preserved baby mammoth found to-date, and mammoth-tusk expert); Dick Mol of the Netherlands;  Dr. Evgeny Maschenko, Dr. Alexei Tikhonov and Dr. Gennady Baryshnikov of Russia; Dr. Ralf Kahlke of Germany; and Dr. Jim Burns of Canada.

In terms of tourists, approximately 100,000 people visit the Mammoth Site each year from all over the world.

“Our town is about 3700 people,” Muller said, referring to Hot Springs, SD, “so when we bring in 100,000 visitors a year, it’s a big economic impact for the city.”

From the United States, visitors from Minnesota and Colorado top the list (visitors from South Dakota itself come in third!), but people from as far as South Africa, Korea, and Australia—among so many other foreign countries—also travel to the site.

The Mammoth Site received accreditation by the American Alliance of Museums in October of 2013.

“We are in the top 6% of museums in the United States, as only about 5.8% of the estimated 17,500 museums are accredited.”

The accreditation process is apparently a lengthy process, and not every museum is successfully accredited upon their initial application. Policies regarding everything from the artifacts and exhibits (its “collections”) to its financial policies are reviewed and evaluated. The Mammoth Site, Muller stated with well-deserved enthusiasm, “made it the first time!”

“We have a $2.2 million major gift campaign going on now,” Muller continued. “$1.6 million is for a ‘Learning Center’, which includes a couple of theatres and a kind of a gathering area. We are planning a bid letting in August and construction to start in October, with a May 2015 opening date.”

The website offers a “buy-a-brick” program as part of that campaign. It is clear that the growth of this museum is–in no small part–a result of the dedication of everyone who works at and is involved with the Mammoth Site. Muller attributes that to a close-knit community within the museum.

“We’re pretty much like a family, and that’s what the reviewers with American Alliance of Museums said that they were really impressed with: how the staff gets along and works together.”

——————————————————————————

*Dr. Agenbroad is pictured with a short-faced bear replica.

The Mammoth Site: http://www.mammothsite.com/

You can apply to excavate at the Mammoth Site! http://www.mammothsite.com/earthwatch.html OR http://www.mammothsite.com/elderhostel.html

Buy-a-brick to help the Mammoth Site campaign! http://mammothsite.pinnaclecart.com/index.php?p=product&id=1064

Pygmy Mammoth, Channel Islands National Park: http://www.nps.gov/chis/historyculture/pygmymammoth.htm

Pygmy Mammoth, Santa Barbara Natural Museum of History: http://www.sbnature.org/exhibitions/199.html

Latin names of mammoth species mentioned:

Pygmy mammoths = Mammuthus exilis

Woolly mammoths = Mammuthus primigenius

Columbian mammoths = Mammuthus columbi

(Earlier post with Dr. Dan Fisher: https://mostlymammoths.wordpress.com/2013/09/10/mammoth-article-qa-dr-daniel-fisher-renowned-paleontologist/)

A Mammuthus columbi-sized THANK YOU to Dr. Larry Agenbroad and Joe Muller for their time, their generous insight, and their work at the Mammoth Site! An equally large thank you to Presston Gabel, Diana Turner and for all who are involved with the work in that museum!

Dick Mol – Renowned Mammoth Expert: Fossil Hunting in the Sea

‘Fossil-hunting’ often brings to mind remote locations filled with rocks, sparse vegetation and a bright, merciless sun.

But Dick Mol–an internationally renowned paleontologist–is part of a team that regularly uncovers fossils in an unusual place: the ocean.

Dick MolDick Mol holding Ice Age bison skull found in the North Sea, image courtesy of Rene Bleuanus and Dick Mol

 His expeditions take place upon the North Sea, a large expanse of ocean between the East coast of the United Kingdom and the coasts of several other European countries such as the Netherlands, Belgium, and Germany up through to Norway.

 


“The North Sea is very rich,” wrote Dick Mol in an email. “Ever since 1874, fishermen have brought large quantities of bones and molars ashore.”

He himself has written articles about these finds, describing how the area is routinely dredged, enabling large ships passage on this navigational route. This dredging is what helps uncover fossils deposited there so many thousands of years ago. Coupled with trawling—a method of fishing that pulls weighted nets along the sea floor—these fossils are then brought to the surface.

“I learned about the Ice Age mammal remains, trawled by fishermen,” he explained, “from the curator of the Geological and Mineralogical Museum in Leiden, now the NCB Naturalis (Netherlands Center for Biodiversity). At that time, the attic of the museum was full of large bones of trawled mammoth bones, skulls and lower jaws. It was very impressive.”

Trawling boat, Stellendam harborFisherman preparing trawling nets as the ship leaves Stellendam harbor for the North Sea, image courtesy of Hans Wildschut and Dick Mol

“I remember,” he continued, “that in November 1992 I brought the late Dr. Andrei Sher, a renowned mammoth expert from Moscow, to the museum. When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world. This was recorded by a film crew making a documentary on mammoths in the Netherlands. Once in a while, I rewatch this brief documentary again, and it gives me very good memories of a longtime ago.”

“When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world.” — Dick Mol, describing the reaction of Dr. Andrei Sher to a collection of mammoth fossils from the North Sea at the NCB Naturalis in the Netherlands

Known to the world as Dick Mol, his name is actually Dirk Jan Mol, and he has been researching mammoths and other Pleistocene fauna for decades. One cannot study mammoths without becoming acquainted with his name and his work.

In response to what prompted his career in mammoths, he wrote, “I grew up on the border with Germany. Around the town of Winterswijk a lot of different geological sediments and fossils can be found from the Triassic, Cretaceous, Oligocene, Miocene, Pliocene and Holocene eras. In different quarries and clay-pits you could collect fossils, but none were of mammoths or remains of other Ice Age creatures.”

“I have been, since 1968, fascinated by mammoths. In the literature, you could read that these prehistoric animals stood up to 5 meters at shoulder (which was exaggerated, of course). I wanted to know more about mammoths and their ancestors. I wanted to find my own mammoths, but it seems that the mammoth has found me!”

“I wanted to find my own mammoths, but it seems that the mammoth has found me!” — Dick Mol

His enthusiasm for the topic has lead him to become a visiting scientist in 1990 and 1994 at the Mammoth Site in Hot Springs, South Dakota—part of the “Visiting Scholar” program designed by Dr. Larry Agenbroad. He has co-authored numerous papers over the years, and his books include Mammoths (published 1993) and, more recently, Mammoths and Mastodons of the Haute-Loire (published 2010), a bilingual book he co-authored with French paleontologist, Frédéric Lacombat.

Scientists and explorers from all over the world have invited him to help excavate their discoveries: some of the most notable finds include the Jarkov woolly mammoth in Russia (Mammuthus primigenius), the Nolhac steppe mammoth in France (Mammuthus trogontherii), and parts of a mastodon skeleton in Greece (Mammut borsoni), in which the longest tusks found to-date were uncovered (502 cm in length).

Queen Beatrix of the Netherlands knighted him for his work in paleontology in 2000. In addition, he is President of Mammuthus Club International and has been involved in the international conference related to mammoth research for years.

His family’s personal collection of fossils exceeds 30,000 specimens that have been used for educational purposes and scientific studies.

Today, he is a Research Associate at the following institutions:

For all of his accolades and accomplishments, Dick Mol is a very accessible and kind man. One witnesses his infectious enthusiasm in these two videos about his work in the North Sea:

 

Trawling for Mammoths: http://www.bbc.co.uk/programmes/p01q0gfr

A Mammoth Task: http://www.bbc.co.uk/programmes/p01q29mg

 

“Over the years, tons and tons of bones have been trawled by fishermen in their nets,” he reiterated. “Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”

“Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”–Dick Mol

“In the meantime, I have organized 43 mammoth fishing expeditions on the North Sea using big beam trawlers. Quite spectacular and always a good catch. Doing these expeditions gave us very good insight into those areas that are very productive and those areas in which Pleistocene fossils are scarce.”

Given the enormous number of fossils brought up from dredging, it doesn’t take a lot of imagination to wonder whether there might be exciting fossil discoveries just waiting to be found if one could go even deeper.

“Yes, for sure,” he agreed. “Most of the bones trawled by the fishermen have been washed out of the seabed by currents. The Eurogully area, off the coast of the province of South-Holland, was dredged from 13 to 40 meters below sea level. At approximately 23-26 meters, there is a rich layer with bones and teeth from the Late Pleistocene. Deeper, there is a layer containing an interglacial fauna (110.000-130.000 BP) including Hippopotamusses and straight-tusked elephants. This is true for the entire southern bight of the North Sea.”

Private collector with femur of the so-called straight-tusked elepahnt, North Sea

Private collector with the femur of the so-called straight-tusked elephant from the North Sea,image courtesy of Hans Wildschut and Dick Mol

But the cost of such an underwater excavation might be prohibitive.

“Once, I used a diver on one of the expeditions. Visibility was very poor, and it was not successful. But some divers in the past have found some mammoth remains. Amongst others, a diver brought up a complete mammoth tusk.”

Aside from the need to desalinate fossils found in the North Sea, they are not physically treated any differently than fossils one finds on land. And despite the wealth of fossils found thus far, Dick Mol does not have any favorites.

“For me,” he wrote, “every bone, bone fragment or remnant is unique and tells us a story….”

Mammoth tibia, freshly trawled, with fish... (1)

Mammoth tibia freshly trawled from the North Sea with fish, image courtesy of Hans Wildschut and Dick Mol

Keep in mind, however, that these fragments and bones are not found together.

Paleontology is like detective work: terrestrial excavations include mapping by grid, pictures, and notes related to where each bone is found. All of these details help paleontologists better understand what species it is and what happened to that animal before and after it died.

The bones found in the North Sea are pulled up individually in a mass of fish and other debris.

Without any of the clues available to someone digging on land, this begs the question: can one determine to which species a bone belongs in isolation?

“[A]fter spending more than 40 years of my life identifying isolated skeletal elements (we have never retrieved a complete skeleton from the North Sea bed) again and again, using comparative collections, it is possible to identify the specimens as soon as they are on the deck of the vessel.”

“Sometimes,” he added, “I need to use literature, but in most cases, an experienced anatomist can do it right away.”

And what about the isolated teeth that have been found in abundance?

“[A]t least three different species of mammoths are well-documented: from the Early Pleistocene the southern mammoth, (Mammuthus meridionalis); from the Middle Pleistocene the steppe mammoth, (Mammuthus trogontherii); and from the Late Pleistocene the woolly mammoth, the icon of the Ice Age, (Mammuthus primigenius). The molars of these species are quite different and easy to tell apart from each other by an experienced specialist.”

Grooves and marks upon the bones give rise to questions about who or what caused them: humans or other Pleistocene animals? And how can one tell the difference?

“Hyena gnawing marks and other predators are well-known and, in general, easy to recognize. Of course, you need some training and experience. Sometimes, especially in large bones, one can see the deep grooves in the so-called material spongiosa caused by hyena (pre)molars. Hyena gnawing marks are very often found in the skeletal remains of woolly mammoths and woolly rhinoceroses. The ice-aged hyena was very common on the Late Pleistocene mammoth steppe environment. Cut marks caused by human activity are completely different from those of predators.”

The “quality and quantity” of the fossils in the North Sea are two things that surprise him the most.

“We have huge collections, and we are constantly learning from them.”

Storage private collection Urk (1)

Private fossil collection storage, image courtesy of Hans Wildschut and Dick Mol (Dick Mol is pictured on the left)

Highlighting mammoth teeth

Please click on this (or any) image to see it in more detail, image courtesy of Hans Wildschut and Dick Mol; highlighting by author

“Recently, many collectors are also focusing on small mammal remains (micro-mammals like voles and lemmings). These remains can be found on the beaches of the North Sea where Pleistocene sediments have been added to strengthen the coastline. Some collectors have hundreds and hundreds of small molars of the entire small mammal fauna. These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”

“These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”–Dick Mol

There are two questions that come to mind regarding the volume of fossils collected so far: where are these fossils stored and how long does it take to catalog and study such collections?

“It is a continuous process,” he stated, referring to the length of time needed to catalog and study the fossils.

But in terms of where they are stored, he wrote, “[t]he NCB Naturalis (Netherlands Center of Biodiversity Naturalis in Leiden) has a huge collection of fossil bones from both the North Sea, as well as from dredging operations in the floodplain of our rivers like Rhine, Meuse and IJssel. Really, a huge collection.”

“Using about 200 skeletal elements of mammoths of almost the same size, same age and same gender, we compiled a skeleton for museum display, a huge male individual. Another extensive collection is housed at the Natural History Museum in Rotterdam. Here, a huge collection of Pliocene and Pleistocene marine mammals is stored. Most of these marine mammal remains have been trawled from the seabed as well, and some of these animals coexisted together with terrestrial mammals like mammoths and other large animals. The marine mammals were living in the paleodeltas.”

Compilation skeleton woolly mammoth, NCB Naturalis Leiden (1)

 

Woolly mammoth skeleton at the NCB Naturalis Leiden Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“And there are some private collections. Some of them are very well documented. They are like professional collections, and they are available and often used for scientific studies.”

“The co-operation between non-professional and professional paleontologists is extremely good in the Netherlands. For more than three decades, both groups have been working closely together on mammoths and mammoth fauna, scoring very interesting results like 14C, stabile isotopes, new species, etc.”

Dick Mol himself posed the final question: “What can we learn from the mammoth bones trawled from the North Sea between the British Islands and the Netherlands?

“The rich terrestrial mammal remains trawled teach us that the North Sea between Britain and the Netherlands was once dry land,” he explained. “The British Islands were connected with the mainland of Europe during the entire Pleistocene or Ice Age (2.580.000 – 11.500 BP). That area was inhabited by different faunas.”

“In the Early Pleistocene, it was a savannah-like environment, dominated by the southern or ancestral mammoths, (Mammuthus meridionalis). In the Middle Pleistocene, it was a steppe-like environment dominated by the steppe mammoth, (Mammuthus trogontherii), and in the Late Pleistocene, it was a cold, dry and almost treeless steppe dominated by woolly mammoths, (Mammuthus primigenius).”

Dick Mol - compilation skeleton

Woolly mammoth skeleton at the Hellevoetsluis Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“At the end of the Pleistocene, this landscape disappeared, caused by dramatic change of climate. It became warmer and warmer, and ice–which blanketed the northern hemisphere–started to melt. Melted water filled up lower countries, and the vast plain became ocean. We know this area today as the ‘North Sea’, and it reached its present sea level about 8,000 years ago. The mammoth steppe disappeared and the mammoth fauna became extinct. This extinction is what we need to accept; it is not dramatic.”

“These events—of which we can learn from the North Sea fossils–show us that we are on a living planet and extinction belongs to it.”
————-

A Mammuthus trogontherii-sized THANK YOU to Dick Mol for his generous and detailed answers to my many, many questions; for his time, his wisdom and his thoughtfulness! What a truly great honor and a great pleasure!!

Dick Mol

 

Dick Mol, image courtesy of Hans Wildschut and Dick Mol

Dick Mol’s papers and research: http://hetnatuurhistorisch.academia.edu/DickMol

The Eurogeul—first report of the palaeontological, palynological and archaeological investigations of this part of the North Sea:  http://www.sciencedirect.com/science/article/pii/S1040618205000649

For fascinating pictures and in-depth descriptions of mastodons and mammoths, Mammoths and Mastodons of the Haute-Loire is a great book (published 2010, in English and in French):  http://www.amazon.fr/Mammouths-Mastodontes-Haute-Loire-Dick-Mol/dp/2911794974/

If you are interested in seeing more of Hans Wildschut’s exciting work, here are links provided by Dick Mol:

Trawling and fossils:

Hans Wildschut – trawling for fossils

Hans Wildschut – fossil finds

Hans Wildschut – trawling for fossils, December 2010

Hans Wildschut – exciting fossil finds and collection (Urk)

Remie Bakker and the creation of the life-sized model of the Mastodon of Auvergne:

Hans Wildschut – Remie Bakker’s work

 

Meet Lyuba – Mummified Baby Mammoth in London

“She’s beautiful.”

So exclaimed Professor Adrian Lister upon seeing Lyuba as the lid to her crate was first opened in London. Lyuba is a 42,000-year-old baby mammoth, and her state of preservation is breathtaking.

”It was an emotional experience to be face-to-face with a baby mammoth from the Ice Age,” Professor Lister said. “I’m so thrilled that our visitors will be able to experience that, too.”

NHM-DrListerLyubawelcome

[image of Professor Adrian Lister with Lyuba, courtesy of Natural History Museum, London]

Her discovery occurred in 2006, thanks to a family of Nenets reindeer herders in Siberia. Lyuba was initially found–her body partially exposed in the snow–by Yuri Khudi’s son. She was recovered in the spring of 2007, and she is named after Mr. Khudi’s wife.

NHM-YuriKhudiSon

[image of Yuri Khudi and son, courtesy of Natural History Museum, London]

If you are in London, you can actually see her on exhibit in Mammoths: Ice Age Giants currently at the Natural History Museum.

Mammoths: Ice Age Giants is a traveling exhibit from The Field Museum, Chicago. Since 2010, it has been seen throughout the United States (albeit under a slightly different title), but most museums have included a replica of the baby mammoth.

LyubainBoston

 

[image of Lyuba replica, taken by the author’s cellphone at the exhibit in Boston, 2012]

The replica is remarkable. But the opportunity to see Lyuba herself is extraordinary.

When asked how the Natural History Museum was able to obtain the actual mammoth, Professor Lister wrote, “The Museum worked closely with Lyuba’s home institution, the Shemanovsky Museum – Exhibition Complex in Siberia, Russia to get the opportunity to showcase Lyuba as the star of the show in Mammoths: Ice Age Giants. This involved complex contract negotiations and we are very grateful to the Shemanovsky Museum for the loan of such an important specimen.”

Hilary Hansen, one of the Field Museum’s Traveling Exhibition Managers, explained that only one of the US museums has been able to showcase Lyuba thus far.

Surprisingly, the reason is not related to cost.

“[T]he Russian government has a moratorium on loans to the US,” she wrote, “so only international venues get to host her.”

(You can read more about the origins of this moratorium here: http://www.nytimes.com/2011/02/03/arts/design/03museum.html)

And how does one ship and display such a rare and enormously valuable specimen?

It was explained that Lyuba has been thawed since discovery, but her body was essentially freeze-dried over the course of her 42,000 years of burial. She traveled to London in a purpose built wooden case which has padding/foam fitted specifically to her body inside so as to protect her during travel. Within the exhibition, she will be displayed in a climate-controlled and sealed case.

NHM-LyubaVisitors

[image of Lyuba and visitors, courtesy of Natural History Museum, London]

So much has been learned about mammoths since her discovery. Through CT scans, autopsies, and other tests, scientists have been able to ascertain more about her diet specifically and mammoth biology in general.

NHM-LyubaScientistsRussia

NHM-LyubaScientistsLab

[images of Lyuba and scientists, courtesy of Natural History Museum, London]

 

An exciting example is described in Professor Lister’s latest book, Mammoths and Mastodons of the Ice Age: the discovery of a pharyngeal pouch between the larynx and the back of her tongue. He discusses the relatively recent knowledge of this anatomical feature in today’s elephants. The pharyngeal pouch can be used for communication and to store water. Elephants in Namibia, he explains, have been seen reaching into their mouths with their trunks and spraying themselves with water they had drunk hours before. (page 80)

Pieces of material believed to be partially digested milk from Lyuba’s mother were found in her stomach (page 84), and her intestinal contents point to a practice used in today’s elephants as well: eating adult elephant feces as a way to introduce needed bacteria for digestion. (pages 84-85)

These are the kinds of exciting details one can explore in this exhibit. Using interactive displays, fossils, sculptures and other artwork, this exhibit not only introduces the visitor to some of the fascinating research being conducted today, but also summarizes some of what we’ve learned about proboscidea to date.

There is a video describing Lyuba’s discovery, and another explaining the remarkable details one can learn from mammoth tusks, both of which feature Dr. Daniel Fisher of the University of Michigan (one of the original scientists who studied Lyuba). There are videos behind possible mammoth behavior, as well as the types of ancient vegetation discovered in soil specimens.

Life-sized models of Pleistocene fauna, including a short-faced bear, a saber-toothed cat and an enormous Columbian mammoth, give added depth to what most would only see in their fossil remains.

Columbian mammoth replica

[image of Columbian mammoth model, courtesy of Natural History Museum, London]

Artwork can be found throughout the exhibit. In a striking display of the diversity of these animals, a sculpture of a dwarf mammoth stands beside a bas-relief of an elephant, a mastodon and a Columbian mammoth. Full-sized fleshed-out sculptures of proboscidean heads—species that lived prior to mammoths and mastodons—extend from the wall.

And fossils—numerous teeth, skulls, tusks and bones—from mammoths, mastodons and other Pleistocene animals can be seen throughout. A cast of the Hyde Park mastodon from New York gives visitors a chance to walk around a complete fossil and see it from every angle. The replica of a mammoth fossil in-situ lies below a time-lapse video of what a particular landscape might have looked like from the time of that mammoth to the present day.

NHM-Mastodon

[image of Hyde Park mastodon cast, courtesy of Natural History Museum, London]

The exhibit is geared toward all ages, with activities for children through adults, and having prior knowledge of mammoths or paleontology is not a prerequisite.

“A key element of the exhibition for the family-focused audience is the interactive activities,” wrote Professor Lister, “such as feeling the weight of the food a mammoth ate in one day, trunk moving and tusk jousting.”

Given its popularity and the success with which it introduces a wide variety of people to the subject, one might wonder how the exhibit took shape.

“The idea originated from staff at the Field Museum several years ago. It was one of several ideas that came about during a process of brainstorming ideas,” Hilary Hansen explained. “The other topics that came about were George Washington Carver, natural disasters, and biomimicry. We tested these topics, along with many others, with visitors, the general public, museum members, and other museums around the country but those were the ones that rose to the top. It helped that the frozen baby mammoth, Luyba, had recently been found in Russia.”

“The whole process took about 3 years, I’d say,” she continued. “And as a whole, probably involved 60+ people to identify and conserve the specimens, develop the content with curators, design the exhibitry and graphics, source and license ages, build interactives, create videos, and build the show.”

“We did a lot of visitor studies and market research before we created [it]. I can’t say that we’ve received any feedback that startled us. It’s been very well received. In fact, the Times gave it 5 stars. That was wonderful.”

The exhibit has been seen from places as far as Chicago to Anchorage, from Boston to San Diego, but recently, from Edinburgh to the relatively nearby London.

When asked if the two recent locations in the UK were a coincidence, Hilary wrote, “We booked these two venues about 3 years ago. We were deliberate in finding 2 consecutive venues in the UK so they could share shipping expenses, which can be significant for an exhibition of this size. These two museums have worked together in the past so it was a smooth transition from one venue to the next. We book our exhibitions about 2 or 3 years out, though there are some exceptions.”

The exhibit has not changed since its inception. But, she wrote, “[s]ome venues have added graphics or specimens for their presentation, if it pertained to their own programming and collections.”

As an example, she added, “The Denver Museum of Nature and Science added a whole section about their Snowmass excavation site. But that didn’t continue on with the tour.”

Which makes the Natural History Museum an exciting place for this exhibit to temporarily reside. Proboscidean experts, Dr. Victoria Herridge and the aforementioned Professor Adrian Lister, are employed there and gave talks about their research. They have, in fact, resurrected the work of Dorothea Bate—an inspiring fossil hunter of the early 1900’s who discovered dwarf mammoth fossils in Crete—and have shed new light on her work.

NHM-DrHerridgeLyuba

[image of Lyuba and Dr. Victoria Herridge, courtesy of Natural History Museum, London]

“Other researchers must have visited the collections to look at the fossils,” Dr. Herridge explained, referring to the fossils Bate brought back to the museum, “but to the best of our knowledge we are the first to have published a taxonomic study based on the fossils themselves (rather than simply referring to Bate’s own papers or Osborn’s Proboscidea). This probably reflects the resurgence of interest in island dwarfing as a research topic in recent years.”

Dwarf mammoths—smaller versions of larger species, as their name implies—have also been referred to as ‘pygmy’ mammoths.

Is there a difference?

Dr. Herridge wrote, “The terms are used synonymously for the most part. I prefer to use ‘dwarf’ for island dwarf hippos because it helps to differentiate them from the extant hippo species Choeropsis liberiensis which has the common name ‘pygmy hippo’ — this species is not the same as the island dwarf hippos, and did not evolve to be small because of an island environment, and using dwarf helps to avoid confusion on this subject. Similarly, there is a cryptozoological belief in the existence of a ‘pygmy elephant’ in the jungle of West Africa, and using ‘dwarf elephant’ for small island elephants helps to avoid confusion here too. And to be consistent, I then also use dwarf for the small island mammoths and deer as well.”

Information on the Museum’s website indicates more work needs to be done.  It was explained that “[c]urrently there are no dates whatsoever associated with the Cretan mammoth fossils, and only a small number of dates for fossils on Crete in general. With colleagues from U. Bristol, U. Oxford and UCLA, Dr. Herridge and Professor Lister are currently working on a project to date many of the sites that Dorothea Bate excavated on Crete, including the dwarf mammoth locality. They have relocated the sites, and then taken samples for uranium series and optically stimulated luminescence dating. No new excavations for fossils have been carried out as yet, but if the results prove interesting more may be done in the future.”

NHM-ColumbianMammothSkull

[image of Columbian mammoth skull and tusks, courtesy of Natural History Museum, London]

 

“The exhibition will allow visitors to enter the amazing world of some of the largest creatures to have ever walked the earth,” concluded Professor Lister. “[Mammoths: Ice Age Giants] will take visitors on a journey from the time when these titans roamed the land through to today’s research into the causes of mammoth extinction, using new scientific research from the Natural History Museum.”

———————–

Watch a video of the exhibit! Mammoths: Ice Age Giants – “It’s not just the bones!” | Natural History Museum

More information from Dr. Victoria Herridge about dwarf mammoths! Identification of the world’s smallest mini mammoth | Natural History Museum

And learn about the possible causes of mammoth extinction from Dr. Adrian Lister! The Last of the Mammoths | Natural History Museum

Visit the Natural History Museum in London before 7 September 2014 to see this fascinating exhibit! http://www.nhm.ac.uk/visit-us/whats-on/temporary-exhibitions/mammoths-ice-age-giants/

Watch Waking the Baby Mammoth from National Geographic (written by Adrienne Ciuffo) to learn more about Lyuba’s discovery: http://www.natgeotv.com/asia/waking-the-baby-mammoth/videos/waking-the-baby-mammoth

Order a copy of Mammoths and Mastodons of the Ice Age by Professor Adrian Lister for more fascinating details about proboscidea: http://www.fireflybooks.com/bookdetail&ean=9781770853157

Dr. Victoria Herridge will have a new book published in 2015, The World’s Smallest Mammoth: http://bloomsburywildlife.com/victoria-herridge/

Extreme insular dwarfism evolved in a mammoth: Paper written by Dr. Herridge and Professor Lister, their research of dwarf mammoths on Crete, initiated by Dorothea Bate in the early 1900’s

A Mammuthus meridionalis-sized THANK YOU to Dr. Victoria Herridge, Professor Lister, Hilary Hansen and Helen Smith for their time, their help and their generous responses to my questions! What a great honor and a true pleasure!!

Mammoths and Mastodons in Indiana – Part 1

The current mammoth and mastodon exhibit at the Indiana State Museum is the brainchild of paleobiologist, Ronald Richards.

In a phone interview, he discussed the evolution of this exhibit; excavating fossils in Indiana; and working with neighboring proboscidean experts: Dr. Chris Widga, Dr. Jeffrey Saunders and Dr. Dan Fisher.

 

Chances are, most people—upon seeing the image below—would describe these animals as ‘woolly mammoths.’

Indiana State Museum - Ice Age depiction

[Image courtesy of Indiana State Museum, more info at the end of the blog post*]

And many would not point to the state of Indiana as a rich source of these fossils.

Which are two of the myriad reasons behind the creation of Ice Age Giants: The Mystery of Mammoths and Mastodons, an exhibit currently available at the Indiana State Museum in Indianapolis.

ISM - Title Wall

[Image courtesy of Indiana State Museum, title wall of the exhibit]

The exhibit opened this past November, but it has taken years of hard work, as well as numerous people and resources, to bring it to fruition.

“It’s a process that consumes your life,” said Ron Richards by phone, referring to the creation of an exhibit. “It consumed me for a couple years. I mean, there’s always a deadline; there’s always something you haven’t got done.”

“It’s not for the frail, I’ll tell you,” he added with a chuckle.

Ron Richards, Paleobiologist at the State Museum, had the idea for the exhibit back in the 1990s.

Thirty years of work there—a job that involves both educating the public and excavating fossils—has provided plenty of fodder for potential displays.

He remarked how often, after giving talks about local fossils, people would approach him in wonder and say, “THIS was found in Indiana??”

With gentle enthusiasm—a cadence that accentuated his descriptions—Ron described what he hoped visitors would take away from the exhibit: how to tell the difference between mammoths and mastodons, the age and gender of such fossils, a better understanding of the habitat that was Indiana during the time of the Pleistocene, and the knowledge that people at the museum are actively digging up these fossils within the state.

So what exactly is the difference between a mammoth and a mastodon?

Almost universally, the word ‘mammoth’ invokes but one of 160 known mammoth species: the woolly mammoth.

The most common mammoth fossils throughout the United States, however, are that of the Columbian mammoth—a veritable behemoth that probably did not have the same furry coat as their woolly relatives and tended to live in warmer climates.

Woolly mammoth fossils are found largely in the upper parts of North America, as well as in Russia, Europe and China.

In sum: when you think of woolly mammoths, think cold. When you think of Columbian mammoths, think warm.

ISM - Mammoth tooth

[Image courtesy of Indiana State Museum. Teeth are an easy way to determine whether a fossil is a mammoth or a mastodon. This is a mammoth tooth. Notice the flat surface with ridges for grinding vegetation.]

Mastodons—the mammoth’s stockier, and, compared to some mammoth species, shorter and hairier cousin—also lived throughout the United States.

Physically, mastodons differ from mammoths in that their backs and their tusks are straighter, their teeth are easily recognizable as teeth (they are bumpy), and their heads are generally smaller.

ISM - Mastodon tooth

[Image courtesy of Indiana State Museum. Above is a mastodon tooth.]

Yet the woolly mammoth and the American mastodon are often confused.

According to Mammoths & Mastodons of the Ice Age, by Dr. Adrian Lister, “in their detailed adaptations and their evolutionary position [the American mastodon and the woolly mammoth] were as distinct as a human and a monkey, separated by at least 25 million years of evolution.” (Firefly Books, 2014, pg. 42)

Still, faced with a large skeleton with tusks, four legs, and a short tail, most would immediately assume ‘mammoth’.

ISM - Hebior mammoth

ISM - Fred

[Can you tell which skeleton is a mammoth and which is a mastodon? Images courtesy of Indiana State Museum.]

How does one pull together so much information–so many possible ideas–into a coherent and engaging learning experience for the public?

“Even I, when I walk through an exhibit, I don’t want to read very much,” confessed Ron. “You have to find a real good balance.”

“One day,” he continued, “we just cut out all the [potential exhibit] labels, and we laid them out in a whole big room. Then we lay down the images of all the proposed specimens. There were about 300! And I realized that when someone walks through this, they want a 45-minute or an hour tour on a 5,000-foot space. How much can we tell them?

“So I just walked through and dictated [the narrative] as though I were giving a special tour for somebody…a VIP… of the exhibit. I timed it to about 45 – 50 minutes. And actually then we converted it into text, more or less.”

Doing so caused him to further realize, “Hey, there just isn’t time to talk about all these little things.”

“We had some high hopes, but it came down to, well, we just can’t do all that. It’s very expensive. We haven’t got the money. We can’t fit it all in. And we’d never get it done.”

He paused for a moment to recall the wise words of an archaeologist with whom he’d worked: ‘There are great projects, and there are finished projects.’

“I understood,” he continued, “that this could go on for a long time. And we really just had to get it done, because it had been dragging since 1990.”

The centerpiece of this exhibit is the Buesching mastodon—a nearly complete male mastodon fossil discovered in Indiana in 1998. It was found on land belonging to Janne and Fred Buesching. The fossil has been nicknamed “Fred”, in honor of Mr. Buesching, who has since passed away.

ISM - Ron Richards, Dan and Janne Buesching

[Image courtesy of Indiana State Museum, Buesching mastodon skull. Pictured from left to right are: Ronald Richards, Dan Buesching, who originally discovered the fossil, and Janne Buesching, Dan’s mother.]

“One advantage we have with an in-house exhibit—and there have been a lot of mammoth and mastodon exhibits out there—is that normally they have to work with casts (as they’re transporting them, and you can’t have curators go with them). Because [our exhibit is] in-house, we used mainly REAL bone. That is a big difference. And the other is that we focus right on Indiana.”

The Buesching mastodon exemplifies this: it was mounted using its actual bones. This feat was accomplished with the help of people at the NY State Museum, who had demonstrated that this could be done on a fossil of their own.

ISM - Fred installation 1

ISM - Fred installation 2

[Images courtesy of Indiana State Museum, installing Fred]

Ron noted another striking distinction: the legs of this mastodon were brought in, mimicking the pose of a fossil cast of this same animal done by proboscidean expert Dr. Daniel Fisher.

Prior to making its home at the Indiana State Museum, the Buesching mastodon was studied by Dr. Fisher at the University of Michigan. The Bueschings had initially contacted Dr. Fisher when the fossil was found.

“He went down and gave them some pointers, some assessments of the site,” Ron explained, “and after that, Dan said, ‘Boy, I’d really like to study this’, so they shipped it up to him.”

“At that point, he took it on. He actually made some casts of Fred.”

“He brought the legs underneath the animal like mastodons and elephants walk. Normally, [museums] stand their skeletons like a bulldog, with their legs real wide. Not only does he understand modern elephants and how they move, but he also has a track-way [of proboscidean footprints] from Michigan to prove it!”

“So he brought the legs in under the animal. And he brought the front ribs together on the chest bone.”

ISM - Beautiful Fred

[Image courtesy of Indiana State Museum, the Buesching mastodon as it appears in the exhibit]

“It’s really a piece of art,” he concluded of the Buesching mastodon.

The exhibit contains a wealth of information and exciting fossil displays. Among other things, one can see a simulated dig pit with real bones as they might have been found, casts of mastodon and mammoth jaws that mechanically demonstrates how they worked, and examples of some of the bones discovered in Indiana.

ISM - Hall of Giants

[Image courtesy of Indiana State Museum, the Hall of Giants–Ron Richards’ favorite par of the exhibit]

There is discussion regarding the theories behind the mammoth and mastodon extinctions: hunted too heavily by people? Disease? Rapid environmental change?

There is even an audio and video panel designed to give visitors an idea of what it might have been like to hunt a mammoth.

‘So you think you can hunt a mammoth with a spear, huh?’ says a label near a metal spear.

Touching the spear triggers a large screen to initiate an image of a mammoth. The floor underneath the visitor begins to vibrate with the sound of an animal charging, as the image of the mammoth becomes larger and larger.

ISM - Mammoth and spear

 [Image courtesy of Indiana State Museum, metal spear and the growing image of a mammoth charging toward the visitor]

Said Ron of that particular display, “I wanted [visitors] to get an emotional charge!”

And to give visitors a sense of just how many fossil sites have been discovered in Indiana, the team at the museum created an interactive map.

“You can push buttons and see where all the mammoths and mastodons were found [throughout the state.] We’ve got about 300 dots for mammoths and mastodons.”

There could be another couple hundred,” he continued, referring to more data from ongoing research that is not included on the exhibit map. “I’ve been doing this research for years, even before [working at] the museum, so I’ve got a lot of dots on maps.”

ISM - Map of mammoths and mastodons

 [Image courtesy of Indiana State Museum, interactive map of Indiana, displaying various fossil sites]

That number is extraordinary.

Given how many fossils have been found locally, one might wonder why this is a temporary—rather than a permanent—exhibit.

“We’re a state museum,” Ron responded. “So we deal with archaeology, paleontology, geology, biology and natural history. We’ve got Amish quilts; we’ve got fine art; we’ve got sports history; [general] history; popular culture; science and technology; applied technology. We’ve got curators in all these areas. We’ve only got so much rotating space. And there are other stories. And we’ve got to constantly bring people in the door.”

“I wanted to have a 2-year exhibit,” he continued, referring to the Ice Age exhibit, “but we have granting and funding for a lot of things that need to fill that space. I think our exhibit schedules are set for 5 years out.”

“If I had my druthers, I’d say, ‘let’s leave it in for 2 years.’ But then it starts tapering down. After a while, everybody has sort of already seen it.”

Included in this exhibit is information regarding today’s elephants, a distant relative of mammoths and mastodons, not a direct descendant. Elephants are in danger of extinction themselves.

ISM - Elephants

 [Image courtesy of Indiana State Museum, the plight of elephants today]

This particular part of the exhibit is important to Ron, but he paused to ponder some of the conflicts between people and elephants.

“It’s hard to talk to other cultures and countries and tell them how they should take care of THEIR wildlife,” he mused. “I mean, you look back at North America, and you look at what happened to bison, and the passenger pigeon, and you know, we’ve been through this ourselves until we had conservation laws.”

“Look at how abundant deer are today, but the white-tailed deer were extirpated from Indiana by 1891. They were hunted out. There were none left. And they were all reintroduced [later].”

“Without regulation, you get hunted out into extermination.”

—————————–

 *Initial image in the blog post is of mastodons.

Part 2, discussing fossil excavations in Indiana, coming up next!

Indiana State Museum: http://www.indianamuseum.org/

Ice Age Giants: The Mystery of Mammoths and Mastodons: http://www.indianamuseum.org/exhibits/details/id/278 — on exhibit now through August 17, 2014!

Online Repository of Fossils, Museum of Paleontology, University of Michigan: (which features interactive images of the Buesching mastodon, among many others!) http://umorf.ummp.lsa.umich.edu/wp/

An enormous THANK YOU to Ron Richards for his incredibly generous time, enthusiasm and patience with my many questions!!  An equally enormous thank you to Bruce Williams!

The Mammoth Site and Dr. Larry Agenbroad – Renowned Paleontologist

Ask Dr. Larry Agenbroad what his most exciting discovery as a paleontologist has been, and his response is: “Too many to select just one.”

He cites, among the top three, discoveries with which you might already be very familiar:

• the most complete pygmy mammoth skeleton found to-date,

• an 11,000 year-old bison kill site,

• and the Jarkov mammoth in Siberia.

These discoveries—like his work—are from all over the world.

Dr. Larry Agenbroad

(Image of Dr. Agenbroad and fossil replica, courtesy of Dr. Larry Agenbroad. If you, like me, thought this was a saber-toothed cat fossil, guess again! See the end of the post for more info*.)

Pygmy mammoths are the smallest of the known species, and their remains have been found on Wrangel Island (off of Russia) and on the Channel Islands (off of California). It is thought that their size evolved from their isolated existence on islands, an environment that would not be able to support multiple Columbian or woolly mammoths.

Dr. Agenbroad led the team that excavated the most complete pygmy mammoth skeleton yet found. A cast of the fossil can be seen at the Channel Islands National Park Visitor Center, and a replica of this fossil in-situ is in the Santa Barbara Museum of Natural History. The SBMNH’s website states that Dr. Agenbroad has found 66 more fossil sites on the islands.

Nebraska is home to the Hudson-Meng Bison Kill Site. Named after Bill Hudson and Albert Meng, who found it by accident in 1954, it eventually produced almost 600 separate bison fossils. These fossils represent a species of bison that does not exist today. Dr. Agenbroad began excavation here in the 1970’s. Different theories exist regarding why so many 11,000 year-old remains of the same species are in one place.

You can see Dr. Agenbroad in the Discovery Channel documentary, “Raising the Mammoth”. It details the discovery and research of the Jarkov mammoth in Siberia. Dr. Agenbroad is among other well-known paleontologists who worked together on this remarkable find: an enormous mammoth encased in ice. That documentary also gives you a peak into the Mammoth Site in Hot Springs, South Dakota, where he is the Chief Scientist and Site Director.

Recently accredited by the American Alliance of Museums, the Mammoth Site houses the largest collection of mammoth fossils in the United States. It is open to the public year-round.

Their website lists that they recently found the 61st mammoth fossil this summer; 58 of which are Columbian mammoths, 3 are woolly mammoths.

Woolly mammoths may dominate mainstream imagination, but the species that lived throughout the U.S. was actually the largest (and possibly the least hairy) representative of that species: the Columbian mammoth.

The Mammoth Site, a growing museum on 8.5 acres of land, is built over the initial excavation area. And that area was originally intended as part of a housing development. Construction came to a halt in 1974 when mammoth fossils were found.

Joe Muller, COO/Business Manager of the museum, describes the initial structure built in 1975 as a modest plywood construction. An addition was made to that structure in 1976 and 1978.

“That [addition] remained over part of the site so people could come in and look a little bit at some of the fossils,” he said in a phone interview.

“[Researchers] would excavate outside (there was a self-imposed hiatus from excavating for 1980-1982 and 1984-1985 until a building could be constructed over the site) until in 1986, the building was built over the sinkhole area. Then in 1990 we enclosed a lobby area with a gift shop.”

Today, there is an additional 4000 square feet of enclosed exhibit space, plus 8,000 square feet for laboratory, bone storage, research library, offices, bathrooms and storage (which opened in May 2001).

And–to give readers an additional sense of the size of the museum space–there is a crane.

“We have a crane in the sinkhole area,” he continued, “so that we can remove the fossils, take them to the ‘mammoth elevator’, and then take them to the basement to the laboratory work on.”

The sinkhole is the reason Hot Springs has such a wealth of fossils. As described both on the museum’s website and in the acclaimed book by Adrian Lister and Paul Bahn (Mammoths: Giants of the Ice Age), the area known as “the sinkhole” was created about 26,000 years ago. It was a 65-foot-deep pond framed by steep banks, with an even deeper section through which flowed warm water. Warm water and vegetation are believed to be the temptations that caused mammoths to venture into the pond. Getting out of that pond—or rather, the inability thereof–is believed to have been the cause of their death.

The many fossils that remain today—mostly young male mammoths—were eventually covered and preserved by mud and sediment over thousands of years. A number of these fossils remain in-situ and available to the public at the Mammoth Site. Excavation within the site continues each year, and it is an opportunity for which one can apply—paleontological background or not. Muller advises that one can apply “to come and excavate for five days with Roads Scholars (May & October), then EarthWatch volunteers come for two two-week sessions; basically the month of July.” Amongst the Ice Age fossils found are camel, llama, prairie dog, a giant short-faced bear, wolf, and numerous invertebrates.

The book Mammoths: Giants of the Ice Age lists the surprising fact that mammoth hyoid bones and bile stones have been recovered here.

Dr. Agenbroad explained that “a hyoid bone is a set (5) of bones that support the tongue. Often only one of the set is found.” When asked how something so seemingly small such as a bile stone could be found and identified, he said that is “a non-osteological specimen”, and that they use “chemical analyses to identify them, comparing and contrasting them to modern elephant bile stones.”

Dr. Adrian Lister, one of the authors of the aforementioned book, is listed as one of the former “Visiting Scholars” to the Mammoth Site. Designed and implemented by Dr. Agenbroad, the Visiting Scholar program invites researchers to study at the site.

“I wanted to ‘cross-pollinate’ ideas, methods, and theories with international experts,” wrote Dr. Agenbroad in an email. In response to whether other sites engage in similar activities, he continued, “It is rare for other sites to invite and support a visiting scholar (usually due to budget restrictions).”

The impressive list of “Visiting Scholars” also includes, among others, Adriana Torres of Mexico; Dr. Laura Luzi of Italy; Dr. Daniel Fisher (now of the University of Michigan, one of the many researchers who worked on “Lyuba”, the best preserved baby mammoth found to-date, and mammoth-tusk expert); Dick Mol of the Netherlands;  Dr. Evgeny Maschenko, Dr. Alexei Tikhonov and Dr. Gennady Baryshnikov of Russia; Dr. Ralf Kahlke of Germany; and Dr. Jim Burns of Canada.

In terms of tourists, approximately 100,000 people visit the Mammoth Site each year from all over the world.

“Our town is about 3700 people,” Muller said, referring to Hot Springs, SD, “so when we bring in 100,000 visitors a year, it’s a big economic impact for the city.”

From the United States, visitors from Minnesota and Colorado top the list (visitors from South Dakota itself come in third!), but people from as far as South Africa, Korea, and Australia—among so many other foreign countries—also travel to the site.

The Mammoth Site received accreditation by the American Alliance of Museums in October of 2013.

“We are in the top 6% of museums in the United States, as only about 5.8% of the estimated 17,500 museums are accredited.”

The accreditation process is apparently a lengthy process, and not every museum is successfully accredited upon their initial application. Policies regarding everything from the artifacts and exhibits (its “collections”) to its financial policies are reviewed and evaluated. The Mammoth Site, Muller stated with well-deserved enthusiasm, “made it the first time!”

“We have a $2.2 million major gift campaign going on now,” Muller continued. “$1.6 million is for a ‘Learning Center’, which includes a couple of theatres and a kind of a gathering area. We are planning a bid letting in August and construction to start in October, with a May 2015 opening date.”

The website offers a “buy-a-brick” program as part of that campaign. It is clear that the growth of this museum is–in no small part–a result of the dedication of everyone who works at and is involved with the Mammoth Site. Muller attributes that to a close-knit community within the museum.

“We’re pretty much like a family, and that’s what the reviewers with American Alliance of Museums said that they were really impressed with: how the staff gets along and works together.”

——————————————————————————

*Dr. Agenbroad is pictured with a short-faced bear replica.

The Mammoth Site: http://www.mammothsite.com/

You can apply to excavate at the Mammoth Site! http://www.mammothsite.com/earthwatch.html OR http://www.mammothsite.com/elderhostel.html

Buy-a-brick to help the Mammoth Site campaign! http://mammothsite.pinnaclecart.com/index.php?p=product&id=1064

Pygmy Mammoth, Channel Islands National Park: http://www.nps.gov/chis/historyculture/pygmymammoth.htm

Pygmy Mammoth, Santa Barbara Natural Museum of History: http://www.sbnature.org/exhibitions/199.html

Latin names of mammoth species mentioned:

Pygmy mammoths = Mammuthus exilis

Woolly mammoths = Mammuthus primigenius

Columbian mammoths = Mammuthus columbi

(Earlier post with Dr. Dan Fisher: https://mostlymammoths.wordpress.com/2013/09/10/mammoth-article-qa-dr-daniel-fisher-renowned-paleontologist/)

A Mammuthus columbi-sized THANK YOU to Dr. Larry Agenbroad and Joe Muller for their time, their generous insight, and their work at the Mammoth Site! An equally large thank you to Presston Gabel, Diana Turner and for all who are involved with the work in that museum!