Science in a Troubling Political Climate – Dr. Chris Widga – Part 2

New Hampshire doesn’t have a state museum.  I never realized there were such things until someone I interviewed mentioned a mastodon fossil in Albany, which prompted me to travel to the NY State Museum soon after to see it.

Not understanding what a state museum is, it shocked me that there was no admission fee; anyone from anywhere could visit the museum at no cost.  I marveled then—as I marvel still—that such places exist. (To be clear: not all state museums are free.)

The Cohoes Mastodon at the NY State Museum in Albany, NY; picture taken by the author of this blog.  I learned of this mastodon thanks to Dartmouth professor, Dr. Roger Sloboda, after interviewing him for a piece I was writing about a mammoth & mastodon exhibit at the Boston Museum of Science in 2012.

 

 

Illinois not only has a state museum, that museum is made up of five separate museums with over 13 million artifacts.  And in 2015, Governor Bruce Rauner wanted to close it completely.

During a messy and contentious budget battle, the museum was shuttered for nine months, only to be reopened this past July with a new $5 admission fee.  But by then, most of the staff had gone, forced to take jobs in other places as their future at the museum was decidedly uncertain.

 

Screenshot from this page of the Illinois State Museum website.

 

No one knows this better than Dr. Chris Widga, who had been a vertebrate paleontologist employed at the Illinois State Museum.  He now works at the Center for Excellence in Paleontology at East Tennessee State University (ETSU).

“The whole question of Channel Islands and island mammoths probably got me through last winter,” Dr. Widga explained as we spoke by phone.

We were discussing the effect islands had on proboscidean evolution and the exciting recent research done in part by researchers from The Mammoth Site and the National Park Service.

“In Illinois, as the State government was falling apart around my ears, as the State Museum was closed, I basically closed my door and was doing the analysis for the Quaternary International article. In so doing, I was thinking about these pygmy mammoths. As it’s icy outside and subzero for about six weeks at a time, that kept my sanity.” He laughed.  “So the Channel Islands has been my refuge, I guess, even though I’ve never actually been out on one of them.”

The move from Illinois to Tennessee was not just a contrast in physical environments.  It also meant moving from a scientific institution founded in 1855 to one that has been open for just 10 years.  Dr. Widga explained that a mere two weeks prior to his start date at ETSU, the university formed a partnership with a local science center.   The ETSU staff maintains the collections, conducts research, and oversees excavations at the nearby Gray Fossil Site.  The science center staff is responsible for educational activities within the museum and overall maintenance.

“Their [educational] philosophy is very similar to ours,” Dr. Widga said of the science center. “It’s inquiry-based. We want people to come in and learn through asking questions rather than just be spoon-fed facts.”

So much of what Dr. Widga has done involves public outreach.  From videos about the collections at the Illinois State Museum to long-distance learning programs like The Mammoth Expedition, work he did in conjunction with Dr. Katy Smith at Georgia Southern University and with the Milwaukee Public Museum.

When I commented on how much I loved that kind of publicly accessible information, his response was, “Part of that is because I’m in a museum. I’m not buried under coursework and teaching. Outreach is valued. The way you justify your existence in a museum is to connect with the public.  And part of that is figuring out how we can connect with the public in ways where it’s an exponential relationship.”

In other words, not having a one-on-one conversation with a museum visitor, but creating a website about the Ice Age in the Midwest, for example.

Figure from a presentation done by Dr. Chris Widga as part of the National Science Foundation grant received; image courtesy of Chris Widga.

 

Despite everything he’s gone through, there is no question Dr. Widga loves what he does.  It permeates his voice when he speaks of paleontology, and it prompted me to ask if he ever becomes excited at work.  His response was a definitive ‘YES.’

By way of explanation, he quoted his now-retired colleague, Dr. Jeff Saunders, who used to say, “‘Going to work in the morning was like going to Disney Land everyday.’”

Not only did the two scientists literally work across the hall from each other at the Illinois State Museum, they were apparently known to shout out excitedly to the other whenever one read a great article or wanted to share a relevant scientific image.

“Part of the reason I like museums is because you just never know!” Dr. Widga continued. “Some of the new things come from the collections; some of the new things come from new papers. You read them and you’re like, ‘oh, this explains it!’ It was something that you had been working on for a long time and, all of a sudden, somebody else had that last piece of the puzzle that puts the whole thing together.

“At least once a day—even on the worst days—there’s something that comes through and I’m like, ‘oh, this is so cool!’”

Proboscideans at Morrill Hall at the University of Nebraska State Museum of Natural History; image courtesy of Chris Widga

 

The seemingly idyllic work environment in Illinois lasted for a decade until 2015. Despite protests, a MoveOn.org petition and public outcry about the museum closing, Dr. Widga and his colleagues were forced to consider other options.  The fate of the museum was out of their hands.

“There was a point as I started looking for jobs last year that I asked myself, you know, do I want to continue in this vein?”

“I’d watched many of [my colleagues] that had taken jobs in Research One institutions [become] totally burned out.  Or they’d kind of gone in weird and funky directions, not because the research was taking them in that direction, but because they were getting pressure from their institution to go in a certain direction or something like that.

“And that was part of the fun of the Illinois State Museum is that I could work on anything. Nobody was saying, ‘You have to work on elephants.’ That was a choice that was mine. Nobody was saying, ‘well, you have to work on dogs.’ That was a choice that was mine. You could chase whatever questions were out there.

“The feedback that I got from the people that interviewed me [was that] they were very interested in what I did.  It was a very different situation than what we were going through at the Illinois State Museum where, essentially, you were being told, ‘what you do is not important.  And none of what you do—your position, your entire existence—is important.’ [The feedback I got while interviewing for other jobs] revived this idea that what we do is important, and it’s exciting.”

I couldn’t help but compare his experience in Illinois to the general anti-science climate in our government today.  It was particularly interesting for me to speak with Dr. Widga about his paper on Pleistocene ecology a day or so after the House Science Committee’s so-called hearing on climate change.  Dr. Widga’s infectious enthusiasm took a very somber turn, as he conceded how difficult things become when “politics starts really driving the boat and reason takes a back seat.”

“That won’t change any of the science,” he added, “[but] it may change how the science is funded. It also won’t change any outreach that we do or the educational activities! In fact, if anything, it’s going to make those seem more important and put more emphasis on those.

“We can talk about the scientific community writ-large, but certainly within the paleontological community, you will find very few working paleontologists, working scientists, who say that education and outreach is not a good thing anymore.

“It used to be that you could just hole-up and do your research and never really interact with the public.  But if anything, this whole process [with the IL governor and the Illinois State Museum] has made us realize that that can’t happen.

“There’s this realization that pre-dates this modern political atmosphere: That you really do need to work with the public and you need to make sure that the point of what you’re doing is out there. Not just in terms of dinosaurs are always cool so therefore that’s why we’re doing it. But we’re also doing it to learn more about how our world works–the nuts-and-bolts of how ecosystems are put together, the nuts-and-bolts of how climate changes impact those ecosystems–that has real-life implications for today and into the future.

“And there’ve been some really loud voices in the last couple of years that have said that over and over and over again. Some of which are people like Jacquelyn Gill! And that is a big shift in science. It’s a big shift in science communications.

“I’m glad that we were moving on that before the current [political] atmosphere because it makes it much more difficult to sideline us as, you know, a bunch of eggheads.”

It didn’t take long for our conversation to take a positive swing upward, as Dr. Widga then described possible future projects involving scientists across the country.

His statement “I’ve always been of the opinion that science is a collaborative effort” couldn’t be more apt.  And I, for one, cannot wait to see what he and his colleagues work on next.

Artwork by Velizar Simeonovski based on scientific research at Mastodon Lake in Aurora, IL; courtesy of Chris Widga

*****

THANK YOU, Dr. Chris Widga, for your generosity of time and spirit in speaking with me about paleontology and the difficulty you’ve gone through.  I loved conversing with you, and I’m eager to read about, watch or see the projects you dive into next!

 

References:

  1. Illinois State Museum reopens to public after nine-month shutdown, John Reynolds, The State Journal-Register, July 2, 2016
  2. Closing decimates Illinois State Museum management, Chris Dettro, The State Journal-Register, December 27, 2015
  3. Much of Illinois State Museum management leaves amid closure, Chicago-Tribune, December 28, 2015
  4. Museums caught in middle of state budget showdown, Steve Johnson, Chicago-Tribune, June 25, 2015
  5. Rainer prepares to close state museums, shutter some prisons to balance ‘phony’ Democratic budget, Becky Schlikerman, Chicago Sun-Times, June 24, 2015
Advertisements

North American Proboscideans and Dr. Chris Widga – Part 1

“Most zooarchaeologists are interested in the people, and they use the animals as kind of a tool for understanding butchering patterns or food ways or something like that.”

Dr. Chris Widga and I were in the midst of a great conversation about three recent papers he co-authored, paleontology, proboscideans, and the state of science today.

“I was always interested in the animals themselves,” he continued, “so when I got the position as a vertebrate paleontologist at the [Illinois State Museum], all of my friends who’d known me for years said, ‘well, that was a no-brainer for us. You were doing vertebrate paleontology all the time on Holocene bison. You never cared much about the people!’”

That beginning in zooarchaeology and the subsequent immersion in paleontology are what give him a unique perspective of the two sciences.  Or, as he himself explained: “I guess I kind of have this foot in both worlds.”

The two occasionally overlap.  In the paper published this past February in Boreas, “Late Pleistocene proboscidean population dynamics in the North American Midcontinent,” he and his colleagues take a closer look at what might have caused the extinction of mammoths and mastodons in what is now the middle of North America. Possible culprits include climate change, shifts in available vegetation, and predators (including humans).

Of the 627 localities included in this study, only 3 offer any kind of human association.  The authors state that these sites were “re-visited to ensure consistent taphonomic and zooarchaeological data,” and that, despite this, whether or not these specific humans and proboscideans interacted remains unclear.

“That’s a distinction I like to make as a paleontologist and a zooarchaeologist,” Dr. Widga offered. “Just because we have a couple of the sites with humans associated [doesn’t necessarily indicate that] humans actually hunted, killed and butchered those animals.  [Humans] may have scavenged them.  They may just simply be associated in these sites. And very few of those sites have been analyzed to the degree of detail that we really need to start teasing apart those issues.”

What he and co-authors Stacey N. Lengyel, Jeff Saunders, Gregory Hodgins, J. Douglas Walker, and Alan D. Wanamaker try to do, however, is take a deeper look at the late Pleistocene environment in which these proboscideans lived.  It’s exciting research: Rather than simply describing fossils discovered in the various US states and one Canadian province, they are trying to put them into context.  In other words, they are trying to understand the ecology of that time period and how that may have affected the megafauna living within it.

But it’s not an easy task.

“Ecologists can look at modern ecosystems and say, ‘Ok. This is what’s going on, and this is why we think that, and this is how we’re measuring it’ in great detail.  But extrapolating those same processes back into the paleontological record is often really, really difficult even with the best data set.

For example, “[w]e can observe boom-and-bust cycles in deer populations, in caribou populations, in musk ox and things like that. But when you try and translate that into the paleontological record, most of the time it’s really difficult because you simply don’t have the samples and you don’t have the time resolution.

“Even in our case, where we have really good samples and we have really good dates on our samples and we’re creating this chronological structure to kind of fit them in, it’s really difficult to translate those patterns into ecology.

“We can’t date a single mastodon any more precisely than about a hundred-year window.”

The fact that some of the ecological constructs used today in extant populations are controversial makes trying to apply such constructs to extinct animals that much more of a challenge.

“When even the ecologists can’t truly [agree upon] what’s going on, you have to navigate things very, very carefully.”

The amount of work put into this paper (work that has produced previous, subsequent and yet-to-be-published papers) is staggering.  Thanks to a National Science Foundation grant, Dr. Widga and Dr. Jeff Saunders—both previously at the Illinois State Museum—were able to visit an astounding number of museum collections in the Midwest and review their proboscidean fossils.

“We’ve [basically] spent the last 5 years in other people’s collections,” he explained. “It was fun because we visited a lot of collections that people don’t usually go to. About half of the data set comes from repositories that have fewer than five mammoths and mastodons.”

 

 

An inside look at the extensive fossil collection at the Indiana State Museum collection–one of the many collections visited by Dr. Widga.  In our conversation, he said, “The Indiana State Museum is a big dot on the map in terms of mammoths and mastodons, in part because of [paleobiologist Ron Richards’] work!”   This image was taken in 2005, picturing then Collections Manager Michele Gretna (currently Director of Archaeology); image courtesy Indiana State Museum and Historic Sites.

Another inside look at the Indiana State Museum collection; Preparator Elizabeth Scott after the reconstruction of the Kolarik locality mastodon tusks, 2014; image courtesy Indiana State Museum and Historic Sites

 

 

Their work involved the review of over 1600 fossils that currently reside in collections in Ontario, Canada, as well as in Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Minnesota, Michigan, Nevada, Ohio, South Dakota and Wisconsin.

“We doubled the number of known published sites for mammoths and mastodons in the Midwest.”

Information that they are willing to share with other scientists, as evidenced by the number of papers they continue to co-author.  Following the Boreas paper, Dr. Widga was part of another two papers published in March in Quaternary International and then in Scientific Reports.

Mammoth teeth take a leading role in the paper, “Reconciling phylogenetic and morphological trends in North American Mammuthus,” published in Quaternary International and co-written with Jeff Saunders and Jacob Enk.

“We’re starting to put out some of these ideas that actually put data onto these [traditional] species boxes that we like to put specimens into.  So that was one of the first steps into thinking about these things: more as morphologically variable populations rather than just trying to assign them to a particular species.

“A lot of times these studies kind of happen in isolation.  So the people that think about morphology, they’ll publish on the morphology and then post-hoc, they’ll say, ‘oh but this doesn’t agree with the genetics at all.’ Or the geneticists will publish on the genetics, but they don’t integrate any morphology.  So our point was to try and integrate both of them and see what they say. Can you use the genetics to kind of structure your interpretations of what the morphology means?”

The authors studied “M3s”—the permanent upper 3rd molar—of both female and male mammoths of various ages from museum collections and from previously published work.

Per Dr. Widga, this is the upper 3rd mammoth molar from Clear Lake Sand and Gravel Pit, Sangamon County, IL. One of his favorites from the ISM collection. It dates to the Last Glacial Maximum and had preserved DNA so is included in the Enk dataset; image and caption courtesy Chris Widga.

 

“Jeff [Saunders] and I would say, ‘this genetic information actually fits perfectly with our morphological information which suggests that there’s a lot of population overlap in between these normally well-defined populations.’ So in between Columbian mammoths in the Great Plains and woolly mammoths from the Great Lakes you have Iowa mammoths that show characteristics of both. And also they show characteristics of both in the same animal!

“That was kind of the impetus for the [Quaternary International paper]: to get that out there, show that you do get a lot of overlap in the morphology. It’s not just clean boxes of Columbian mammoths and woolly mammoths. And even pygmy mammoths overlap with Western Columbian mammoths! So that was kind of the point of the paper: to get the conversation going and make a first pass–a first attempt–to reconcile the two data sets.”

Following soon after the paper in Quaternary International, he was part of a remarkable group of proboscidean and genetic scientists whose paper The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis analyzed 143 woolly mammoth mitochondrial genomes.

As Dr. Widga said with characteristic enthusiasm about his work in paleontology, “It’s always fun! There’s always a mountain to climb and a vista to see!”

*****

A Mammuthus columbi-sized THANK YOU to Dr. Chris Widga, who was remarkably generous with his time, with images to use and with answering my many, many questions (both for this blog and for my own proboscidean curiosity).  Speaking with him was delightful; he is an incredible ambassador for science in general!

Another sincere THANK YOU to Ron Richards for providing the great images of the Indiana State Museum collection. 

References:

  1. Widga, C., Lengyel, S. N., Saunders, J., Hodgins, G., Walker, J. D. & Wanamaker, A. D.: Late Pleistocene proboscidean population dynamics in the North American Midcontinent. Boreas. 10.1111/bor.12235. ISSN 0300- 9483.
  2. Widga, C., et al., Reconciling phylogenetic and morphological trends in North American Mammuthus, Quaternary International (2017), http://dx.doi.org/10.1016/j.quaint.2017.01.034
  3. Chang, D. et al. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7, 44585; doi: 10.1038/srep44585 (2017).

Mastodon fossil at the Illinois State Museum; image courtesy of Chris Widga.

Rewriting the Story of How They Died – Columbian Mammoths in Waco

[[The following text has been edited from the original post.  Email me for the original post: mostlymammoths (at) gmail.com or read the full scientific paper by the authors here.]]

*****

Sometimes, it just takes a different point of view.

The largest known potential nursery herd of Columbian mammoth fossils in the world exists in Waco, Texas.  Of the 25 mammoth skeletons found to-date, 16-22 of them died at the same time. Something catastrophic occurred to these animals in the Pleistocene, but just what remains inconclusive.

While some speculate death by lightning, disease or miring, the predominant theory maintains that this is a herd of mammoths that died and were buried in the same flash flood.  It’s an idea that has stuck for many years given the existence of aquatic fauna and the evidence of an ancient river upon which many of the fossils have been found.

Female W - Waco Mammoth NM - Larry D. Moore

Image of Female Mammoth “W” at the Waco Mammoth National Monument, photo by Larry D. Moore CC BY-SA 3.0, 2013

 

But Logan Wiest, Don Esker and Steven Driese of Baylor University have a different hypothesis, one published this past December in Palaios.  By studying traces on the bones available in situ, as well as those available in the nearby Mayborn Museum, they offer an entirely new idea: water didn’t kill them; its absence did.  Struggling to find water in a drought, these animals may have collapsed and died at a watering hole that could no longer sustain them or anything else.

Columbian mammoths were enormous animals.  In general, they are known to be much larger than woolly mammoths and considerably larger than mastodons, both of which were behemoths in their own right.

The mammoth skeletons at Waco are thought to be a matriarchal herd, consisting mainly of females and youth (no calves).  The evidence suggests a herd, and there is more research to be done to prove it using stable isotopes.  A single bull has been discovered in a different geologic layer.  Separate fossils of other species—none of them complete except for a western camel—have also been found throughout the site.

Don admitted he didn’t have an alternative explanation for the death of so many animals. He invited his colleague, Logan Wiest, to take a closer look at the fossil evidence.

“I’d brought [Logan] in hoping he’d look at the [site’s paleosols],” Don said. “I knew he was a trace fossil expert, so I’d hoped he [might] tell me a little bit about the conditions based on worm burrows, [for example].

“What he found instead was much more interesting! He found that there were all kinds of bite marks on the bones.  We didn’t find those all at once.  It actually took quite a while [before] we recognized what we were seeing as bite marks.  A lot of literature research and a lot of staring at bones.  Those bite marks shouldn’t have been there if the mammoths were immediately buried.

“One of the first things he noticed and was able to identify quickly were dermestid beetle bite marks: pits that the beetles dig in the bones when they’re going to lay eggs.

“I thought that perhaps [evidence of dermestid beetles] might be there, but I didn’t realize the significance of [that evidence].  He’s more of an expert on this than I am.

“And he knew that dermestid beetles don’t eat wet meat.  It actually has to be almost completely dessicated–no moisture left at all, just the fats and proteins–before the dermestid beetles will touch it. And that didn’t fit well with animals that were killed in a flood and rapidly buried.

“Dermestid beetles also don’t burrow. Even a single inch of soil is enough to keep dermestid beetles from digging down to perfectly good meat.  They can’t dig.”

Figure 7 - Palaios

FIG. 7.—Cubiculum isp. on various skeletal elements. A) Slightly elliptical, hemispherical bore on in situ rib of mammoth W. B) Hemispherical boring on mammoth U phalanx (545-BU-MMC). C) Shallow bore on femoral articulation surface 761a-BU-MMC. D) Shallow bore on eroded long bone of mammoth D limb fragment (203-BU-MMC). E) Hemispherical bore in cancellous bone on the surface of a spiral fracture (20-BU-MMC). F) Comparative trace generated by captive hide beetles on a wild-hog skull (Sus scrofa). Note the similarities in size and morphology to Figs. 7A-E.

 

Used with permission, PALAIOS, v. 31, 2016, © SEPM Society for Sedimentary Geology 2016.

 

“So, it was Logan looking at this and trying to think about what might be causing this instead of a flood, and he said, ‘Well, how about a drought?’

“I knew about some other evidence that really fit with that. So that clicked with me very quickly, particularly the fact that we’ve got both aquatic and terrestrial animals—a great diversity of them all in the same place.  What that suggested to me was a diminishing watering hole. And I wouldn’t have realized that if Logan hadn’t noticed the dermestids and figured out the drought angle.”

Beyond studying the available literature for trace fossil search images, they tested their ideas on the heads of deceased wild hogs using extant dermestid beetles. In effect: they put the fleshy heads into a contained area and let loose the beetles, who proceeded to consume all of the flesh, leaving clean skulls. It’s an efficient and chemical-free method used by scientists and museums the world over.  But for Logan, Dan and Steven, this provided more data for comparison. Traces left by the beetles on the wild hog skulls are similar to traces on the fossils in Waco.

 

dermestid-beetles-lisa-buckley1

Screenshot of a tweet regarding the use of dermestid beetles from Dr. Lisa Buckley, paleontologist and ichnologist at the Peace Region Palaeontology Research Centre

 

“Previous studies have attributed trace fossils of this size and morphology to dermestid beetles,” Logan wrote in response to what prompted them–of all insects that might have left traces on fossils–to think of dermestid beetles.  “We simply wanted to test this notion by providing bone to dermestid beetles and seeing if these traces could be duplicated under controlled conditions. The beetles came from a nearby museum, but they are also native to Texas. We used the head from a hog simply because wild hogs are easily accessible in central Texas.”

A true ichnologist, Logan added, “I’ve also spent a great deal of time observing bones of modern cattle that were scavenged upon in pastures near my home.”

They didn’t just find evidence of ancient dermestid beetle traces; they found traces of animals who gnawed at the bones: rodents and carnivores, including a possible saber-toothed cat.  It is important to consider that animals drowned and then rapidly buried in a flash flood would not be accessible to these terrestrial scavengers.  This indicates that these Columbian mammoth carcasses were exposed on land long enough to be at least partially devoured.

That, too, is key. Remember that most of these mammoth fossils are articulated skeletons, complete except for missing tails and parts of their feet.  In an area devastated by drought, even scavengers would lack the energy to completely devour and tear apart a carcass.  All of these clues add more weight to the scenario proposed by these authors.

Figure 5 - Palaios

FIG. 5.—Brutalichnus brutalis on M. columbi skeletal elements. A) Arcuate grooves on femoral head 761a-BU-MMC. B) Relatively deep, arcuate grooves on mammoth Q in situ patella. C) Isolated arcuate groove on proximal radius (40-BU-MMC) of mammoth B. Note the similarity in curvature between the arcuate groove and the saber-toothed cat canine recovered from WMNM. The tooth is 6.4 cm for scale. Also note the faintly colored lines that are parallel to the arc of the groove. Dashed white box highlights the area depicted in D. D) Close-up image of groove depicting the microfractures within the trace on 40-BU-MMC. Notice how the fractures are all open towards the upper-right corner of the image, indicating the trace was generated from a force moving from the upper right towards the lower left. E) In situ femur of bull mammoth at WMNM. F) Arcuate grooves on mammoth Q phalanx 522-BU-MMC.

 

Used with permission, PALAIOS, v. 31, 2016, © SEPM Society for Sedimentary Geology 2016.

 

Describing the tools they used to study the fossils in situ, Logan wrote, “The low-angle light creates a shadow which makes the small structures on the bone surface to be easier to see and photograph. We used a Dino-Lite portable microscope to study the fossils mainly because we are unable to transport the mammoth remains from the site to the laboratory. Studying the fossils in place is the best way to ensure preservation of the original positions.”

In other words, because the fossils remain where they were found, they studied those available directly at the site.  Their paper states that the in situ fossils comprise 30% of the available Waco fossils.  The rest reside at the Mayborn Museum, some of which are available in their collections, but most of which remain unopened in their plaster jackets.

“It’s an amazing site,” Don enthused, “and there’s decades and decades of research there, on top of potentially a lot more excavation, too, because they are in NO WAY finished excavating. What they’ve got probably represents a fairly small fraction of the whole deposit.

“One of the things that Logan and I were speculating about [is] if you’ve got a really big regional drought, that should show up in multiple places in the geologic record, especially right in that area.  The bed that we’ve got marking the drought as this depositional hiatus could be covered with bones for acres and acres in every direction.

“And we know that it’s covered in bones at least 80 or 90 feet away from where the known deposits are because we’ve done core sampling that have pulled out large bone fragments.  We only did a couple of them—a couple at random!—and they hit bones both times.”

 

Figure 4 - Palaios

FIG. 4.—Machichnus regularis on various skeletal remains of M. columbi (unless otherwise noted). A) Rodent gnaw marks on rib 764b-BU-MMC. B) Rodent traces on mammoth E limb fragment 203a-BU-MMC. C) Rasps on vertebra of in situ camel. D) Rodent gnaw marks on in situ neural spine of juvenile mammoth T in L1. E) Rodent traces on in situ left scapula of bull mammoth (Q) in L2. F) Close-up image of the same trace depicted in view E.

 

Used with permission, PALAIOS, v. 31, 2016, © SEPM Society for Sedimentary Geology 2016.

 

 

The Waco Mammoth site itself has been around for 39 years, but it has only been part of the National Park Service since July 2015, thanks to President Barack Obama and the work of many people years beforehand who helped bring that to fruition.  Don and I discussed this by phone, given the current political climate and the fears that some National Monuments might lose their status.

“That’s really worrisome,” he remarked. “And what really sticks in my craw about the Waco Monument in particular is that it’s costing the Federal Government almost nothing.  The city of Waco is paying for almost all of the upkeep.  The original buildings? That wasn’t tax money. That was done by good old fashioned fund-raising. And the day-to-day operations are almost all city.  There are a couple of rangers there alongside city employees and some signage and brochures. And that’s really all the Federal Government’s paying into it.”

“It’s a really incredible place.  There are not a lot of sites like this anywhere, as far as in situ fossils sites go.”

*****

A Mammuthus columbi-sized THANK YOU to Don Esker and Logan Wiest for their remarkable generosity in answering my questions and for sharing their research with me.  It was an enormous pleasure speaking with and communicating through email with them.  I loved reading their research and hearing more of the history behind it!!

You can read the paper here.

A sincere and enthusiastic thank you to Kathleen Huber, Managing Editor at Palaios, for her gracious permission to use the figures contained in this post!

References:

  1. The Waco National Monument may represent a diminished watering-hole scenario based on preliminary evidence of post-mortem scavenging, Wiest, Logan A.; Esker, Don; Driese, Steven G., Palaios, December 2016, DOI: 10.2110/palo.2016.053
  2. Waco National Monument, Waco, TX
  3. City of Waco, TX – Waco Mammoth National Monument, Waco, TX
  4. Mammoth Opportunity, Jeff Hampton, Baylor Arts & Sciences Magazine, Fall 2016
  5. What is Ichnology? from Introduction to Ichnology, Anthony J. Martin, Emory University (This page offers a great explanation of some of the more technical ichnological terms included in the scientific paper referenced for this post. I also recommend Dr. Martin’s book, “Dinosaurs Without Bones” for a more comprehensive look into ichnology.)
  6. Flesh-Eating Beetles Explained, Mollie Bloudoff-Indelicato, National Geographic, January 17, 2013

 

waco-mammoths-3-from-city-of-waco-video

Screenshot of the entrance to Waco Mammoth National Monument from a video done by the City of Waco

Meet Dr. Katy Smith – Mastodon Detective

If you imagine the Great Lakes region over 10,000 years ago, you might see large, hairy beasts with relatively straight tusks grazing around boggy areas or moving within dense forests.  Their fur and overall appearance might cause you to confuse them with woolly mammoths, but these are the mammoths’ shorter, stockier cousins.  And if any of them would let you get close enough to inspect their mouths, you’d see in an instant that their teeth are completely different than those of mammoths.

 

[image of contemporary boggy area in Alaska, courtesy Getty Images]

 

Whereas mammoths are believed to have eaten grasses and even flowers, mastodons needed teeth suited to the mastication of hardier stuff: shrubs, parts of trees, perhaps pinecones?   Mastodon teeth, with the bumps and ridges one might associate with carnivores, are easily recognizable as ‘teeth.’  Mammoths, in contrast, needed to grind food, producing teeth with spherical lengths of ridges across each tooth.

ISM - Mastodon tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.  Can you tell which tooth belongs to which species?]

 

ISM - Mammoth tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.]

And while woolly mammoths pervade popular culture and interest, there are some, like Dr. Katy Smith, Associate Professor of Geology at Georgia Southern University and Curator of the Georgia Southern Museum, who prefer their lesser-known cousins and have made fascinating contributions to our understanding of them.

Mastodon discoveries usually produce the fossils of a single animal, and rarely a complete skeleton. Rarer still, finding skeletal remains of multiple mastodons at the same site.

Such a unique discovery occurred in 2005, when more than 300 fossils were found in Hebron, Indiana.  Now known as the “Bothwell site,” it was originally going to be the location of the landowner’s pond.  Instead, Indiana State Museum paleobiologist Ron Richards and his crew uncovered bones that included numerous mastodons (Mammut americanum), giant beaver (Castoroides) and hoofed animals with even-toes (artiodactyls).

ISM - 2005 Bothwell Mastodon 2

 

ISM - 2005 Bothwell Mastodon 1

[images of the Bothwell site dig, courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 2.]

 

Four years later, the Bothwell site became the focus of Katy Smith, her dissertation, and two subsequent papers she co-wrote with Dr. Daniel Fisher at the University of Michigan.

But let’s take a moment to consider what paleontologists uncover. However rudimentary this may seem, it is important to note that bones are generally not discovered in neat order, intact and with each skeletal component attached where it would have been in the life of the animal.

Consider, too, that not all bones survive.  And those that do are often broken or in terrible condition.

So even at a site such as Bothwell, which produced lots of fossils, a paleontologist’s job is no less challenging.  The pieces of information are incomplete, mere clues to the animals that died there.

The questions, however, are profuse.

Why were so many animals found in that one spot?

If, as it is currently debated, mastodons shared behavioral traits with modern-day elephants, was this a family unit?

If so, was this group—like elephants–comprised largely of female and juvenile mastodons?

And why were other unrelated animals discovered among them?

Did a sudden disaster kill them all?  Were humans involved?

 

Embed from Getty Images

 

Sexual dimorphism is another way of referring to the traits that make an animal either female or male.  Some of us would assume, since mastodon pelvic bones were not among the Bothwell fossil assemblage, that the sex of these animals would remain unknown.

There were 13 mastodon tusks, only four of which were complete. And this, remarkably, is what prompted Katy Smith’s research.

“I wanted to know if I just had tusks, what can I do to figure out if I’m looking at a male or a female,” she explained by phone.

Katy Smith - measuring an African elephant tusk

 

[image of Dr. Katy Smith measuring an African elephant tusk in (what this author believes must be one of the greatest places on earth) the basement and fossil collection of the University of Michigan; courtesy of Dr. Katy Smith]

 

“Other people have looked at [sexual dimorphism], but I wanted to look at it specifically with the Bothwell mastodons, because they were inferred to be female, and female mastodons are less common in the fossil record than males.

“When I presented preliminary results from my research in a paleontology class, the professor said, ‘Why don’t you try multivariate analysis?’ And it just kind of spiraled from there.”

Multivariate analysis,’ as the name implies, means using more than one type of measurement or observation towards a hypothesis.  In other words, rather than simply using size as a determination of sexual dimorphism, applying numerous methods and statistics that support or disprove it.

Already, the amount of information scientists have pulled from tusks alone is fascinating.

Tusks are teeth.  They are described, in Dr. Smith’s dissertation as “hypertrophic incisors.” And, unlike human teeth, they continue to grow the entire life of the animal. So where we can simply look at a human tooth and know immediately whether it is from an adult or a child, the same cannot be done with tusks.

What their hardy structure records includes the age of the animal, growth in winter or summer months each year, their overall diet, and periods of nutritional stress.  (As described in an earlier post, Proboscidean molars can even provide details regarding where they roamed during life.)

But much of this information can only be gleaned from well-preserved, intact tusks, as well as from cutting into and examining their chemical composition.

“If you don’t know what the sex of the animal is before you look at tusk microstructure,” she said, “it can be hard to interpret what you’re looking at.”

Part of what Dr. Smith hoped to discover were similarities in the tusks where sex and age had already been determined.  If certain structural elements were the same across female mastodon tusks, such that they tended to differ from male mastodon tusks, this might help determine sexual dimorphism in future tusk discoveries.

She also hoped to discover any similarities between the tusks of extant elephants and mastodons.

Katy Smith -longitudinally bisected tusk

 

[image of longitudinally bisected tusk, courtesy of Dr. Katy Smith] 

 

Thus, she studied and measured tusks of both species from numerous museum collections. (Asian elephant tusks were not used, as female elephants of this species tend to have either tiny tusks or no tusks at all.)  She rather amusingly refers to the approximate amount of tusks involved as “5,000 pounds of tusk.”

Her dissertation and the two papers describe the type of analysis performed in detail.  Among them were canonical variates analysis (CVA) and discriminant function analysis (DFA).

“Fortunately, we didn’t have to cut into the tusks to do those measurements. You just insert a stiff wire into the pulp cavity.”

“We think about tusks sometimes as stacks of sugar cones, because they actually grow in a kind of [layered] cone structure. So you think about one sugar cone, and then you put another one inside that one and then another one inside that one and so on and so forth. And the last sugar cone is empty. There’s nothing in it. That represents the pulp cavity.”

“[Analyzing the] pulp cavity is probably one of the best single measurements that you can use to distinguish between male and females. [I]n females, that pulp cavity will terminate before the gum line, and in males, it will terminate after the gum line, closer to the tip.

“This is something that we saw in almost every mastodon. So it was kind of cool.”

 

Katy Smith - female mastodon

 

[image of female mastodon skull and tusks, courtesy of Dr. Katy Smith]

 

“If we could have cut every tusk, I would have,” she admitted, and laughed. “But it was a matter of collecting these measurements at different museums. And so I would just go there and collect all of them, and that was how we’d get the pulp cavity depth.”

“I’ve always been interested in paleontology,” she said when I asked her how she got started.

“I’m one of those kids who just never grew out of it. My parents used to take me to the museum all the time, and I used to spend hours and hours staring at the dinosaur dioramas there, just loving it.  I told my kindergarten teacher I wanted to be a paleontologist. I never changed! My 5-year-old self grew up and became a paleontologist.”

But her interests moved away from dinosaurs when she realized that their fossil record in Wisconsin, her home state, was rare to nonexistent.

After all, she said, “I started just wanting to explore what was underneath my feet.”

It wasn’t until grad school at Michigan State, where she met the late Dr. Alan Holman, that she realized her passion for mastodons.  His own interest in the species was infectious, and it was through him that she learned of the numerous mastodon (Mammut americanum) fossil discoveries in the area.

“Wow!” she said, recalling her initial reaction. “There are over 300 mastodons in Michigan. This is exciting!”

Katy Smith - male mastodon

[image of male mastodon skull and tusks, courtesy of Dr. Katy Smith]

Not surprisingly, she did her PhD work at the University of Michigan, home to Proboscidean expert Dr. Daniel Fisher, who was her advisor.

“I wanted to work with him,” she explained, “because I wanted to continue working on mastodons, and he had a couple of ideas for projects. One of them included this assemblage of mastodons from Indiana, which were—supposedly—all female.”

What she discovered regarding the Bothwell site is both thought-provoking and fascinating:

  • 8 tusks were determined to be female; the other 5 are unknown
  • the ages of the mastodons range between 19 and 31 years old
  • there is evidence that at least one juvenile might have been among them (a “juvenile tooth crown” was found)
  • given that two mastodons died in winter, and another two died either in late summer or early autumn, this indicates that the collective deaths of these animals didn’t happen at the same time (hence, not a single event)
  • none of the mastodons appeared to be under nutritional stress when they died
  • members of a family unit would be expected to have the same “isotope profiles”–chemical signatures in their teeth–but these do not

Based on the evidence provided, Dr. Smith wonders whether these animals were part of a meat cache for humans (members of the Clovis culture) that co-existed at that time.

But perhaps the single most remarkable result of her research is helping other paleontologists–who often have nothing more than a single tusk–determine the sex of that animal using her different types of analysis.

Prior to her dissertation, only one female mastodon tusk had been analyzed for growth rate.  To date, I am unaware of any other publication (paper or book) that helps detail the sexual dimorphism in mastodons by tusks alone.

When I remarked upon this, I asked her if others had cited her work.  Her response, after stating that others had, was equally fascinating to me.

“It’s always the hope as a scientist that you’re contributing in some way,” she said, “and you know that you’re contributing if somebody else is using what you’ve done.”

 

An enormous and sincere THANK YOU to Dr. Katy Smith for her generous and fascinating answers to my many questions, her gracious help when I had trouble understanding certain points, and for being so much fun with whom to connect! I cannot express how much I wish I could attend her classes, nor how fascinating I found her dissertation. I am profoundly grateful that she shared it with me!

A sincere thank you to my Dad, as well, for helping me understand tooth components (i.e.: dentin, cementum)!

**A quick reminder that I am neither a scientist nor a paleontologist, so any errors in this post are my own.

Bothwell Mastodont Dig, courtesy of Indiana State Museum; many thanks to Bruce Williams and Leslie Lorance!

—————

References:

 

Other references:

 

Cohoes mastodon size comparison

[image of sign in the NY State Museum illustrating the size difference between an extant elephant, a woolly mammoth and the Cohoes mastodon; picture taken by the author]

These Two Museums Need Your Help: Pt. 2 Illinois State Museum

Actually, the title to this post is a misnomer: there is one main branch of the Illinois State Museum in Springfield, but there are 4 other state museums in different locations that also fall under the “Illinois State Museum.”

And all five of them are under the threat of closure on July 1st.

On June 2nd, the office of Governor Bruce Rauner announced what programs he intended to cut in an attempt to save $400 million in the Illinois state budget.

As these museums fall under the responsibility of the Illinois Department of Natural Resources, the Governor’s press release stated that the [IDNR] “will begin the process to suspend operations and close the five state museums to visitors. The state will continue to maintain and secure the museums to protect the artifacts and exhibits.

Gov Rauner shuts down museums

 

Screenshot of the Governor’s press release, highlighting the museum closure.

You can read about the many other program cuts and their potential impact here in this article in the Chicago Tribune. (http://www.chicagotribune.com/news/local/politics/ct-rauner-madigan-budget-cuts-met-0603-20150602-story.html)

 

The idea of shutting down one museum—let alone five—seems incomprehensible. These museums collectively contain millions of artifacts.

Chris Young, a spokesperson for the IDNR, wrote in an email that the number of visitors to all museums last year was 386,750 people.  The specific number of people for each museum in 2014 is as follows:

  • Illinois State Museum main facility in Springfield plus Research and Collections Center:  199,304
  • Dickson Mounds:  50,297
  • Chicago Gallery:  64,300
  • Illinois Artisans Shop Chicago:  39,896
  • Lockport Gallery:  14,253
  • Southern Illinois Art Gallery:  18,700

These numbers do not take into account the online resources provided by the museums nor the collaboration between researchers in other states or countries.

Illinois State Museum websitehttp://www.museum.state.il.us/ismsites/main/

Illinois State Museum’s Ice Age website: http://iceage.museum.state.il.us/

iceage.museum.state.il.us

Screenshot of the Ice Age website released this year by the IL State Museum.

 

Enter Samantha Reif.  According to an article on NPR Illinois, she is both a museum volunteer and a geology teacher, and she created the MoveOn.org petition asking Gov. Rauner not to shut down the museums.  At the time of this post, there are 4,514 signatures.

But if the threat of shuttering them becomes real, how does one actually go about closing museums?

“The museum will return art objects owned by other entities that are currently on display,” Chris Young of the IDNR responded. “Consigned Illinois Artisan works also will be returned, as well as scientific collections from other museums and universities that have been borrowed for research purposes.”

“The museum’s staff will also be calling back artifacts and specimens that are on loan to other entities for research and exhibition,” he continued. “At this time, there is no definitive list of objects or collections to be returned.”

In addition, he wrote that the “museum currently has three active research grants from the National Science Foundation, and is a partner on a NSF education grant. [The] museum administration is working on a strategy for completion of the current grants.”

He noted that there are 68 people employed throughout these museums, but that lay-off notices have not yet been sent.

“Closure will come after the museum’s professional staff has adequate time to ensure that collections are properly accounted for and stored. No specific date has been set for closure as details are still being worked out.”

——————-

If you are Facebook, you can stay informed here:  https://www.facebook.com/pages/Save-the-Illinois-State-Museum/917517601639564

You can sign this petition as well: Governor Rauner: Don’t Close the Illinois State Museum – MoveOn.org
http://petitions.moveon.org/sign/governor-rauner-dont.fb48

 

ISM Hot Science: The Importance of Museum Collections, Dr. Chris Widga at the IL State Museum on YouTube

 

Thank you to Chris Young at the IL Department of Natural Resources for his help and quick responses to my questions!

An enormous THANK YOU to Samantha Reif for creating the MoveOn.org petition!! 

Thank you to the American Alliance of Museums, from whom I initially heard about this through their tweet (https://twitter.com/AAMers/status/608034565085642752)!

This particular writer has gained invaluable information and help in the past from one of the museum’s paleontologists, Dr. Chris Widga, and from the informative website recently released about the Ice Age (http://iceage.museum.state.il.us/).

Tweet I love museums

(#ILoveMuseums originates from http://ilovemuseums.com, a campaign in the UK by the National Museum Directors’ Council.)

—————

References:

  1. Rauner starts budget cuts to force Dems to negotiate on his agenda, by Rick Pearson, Monique Garcia and Alejandra Cancino http://www.chicagotribune.com/news/local/politics/ct-rauner-madigan-budget-cuts-met-0603-20150602-story.html
  2. Rauner prepares to close state museums, shutter some prisons to balance ‘phony’ Democratic budget, by Becky Schlikerman: http://chicago.suntimes.com/news/7/71/656741/rauner-orders-cuts 
  3. Administration Initiates Management Steps to Prepare for Madigan-Cullerton Budget, Governor Rauner’s Office Press Release: http://www3.illinois.gov/PressReleases/ShowPressRelease.cfm?SubjectID=3&RecNum=13115
  4. Who won’t get paid if the Illinois budget stalemate drags on, by Thomas A. Corfman: http://www.chicagobusiness.com/article/20150610/NEWS02/150619982/who-wont-get-paid-if-the-illinois-budget-stalemate-drags-on
  5. Illinois State Museum closing would be devastating, advocate says, by Bernard Schoenburg: http://www.sj-r.com/article/20150610/NEWS/150619927
  6. Will The Illinois State Museum Go The Way Of The Mastodon? by Amanda Vinicky, NPR Illinois: http://wuis.org/post/will-illinois-state-museum-go-way-mastodon

 

The Treasure in Gold Mines: Fossils! – Yukon Paleontology, Part 2

I admit to having preconceived notions of what it means to find fossils and to mine for gold.  It never occurred to me that these two occupations might be interconnected.  Nor would I have ever described the image below as what it actually is: placer gold mining.

Placer Gold Mining - Monitor

 [image of a water monitor, placer gold mine in Quartz Creek, courtesy of the Government of Yukon. Can you find the rainbow?]

That water jet is called a ‘monitor’, and it slowly melts the permafrost, exposing the alluvial gold from the gravel below.

It also reveals fossils.

“Since the beginning of the Gold Rush, people have been finding Ice Age fossils there,” explained Dr. Grant Zazula by phone.

The Gold Rush, an event that peaked in 1898, brought people from all over the world to the Klondike area of the Yukon.  It was once solely the home of several indigenous cultures, including the Inuit, Han, Tagish, Tlingit and Tutchone. But the hope of finding treasure—in an industry that required inexpensive equipment (a pan, a rock pick)—brought thousands to an area that most would consider inhospitable.

 

Embed from Getty Images

 

Embed from Getty Images

 

gold miner Gerry Anhert

[image of gold miner, Gerry Ahnert, courtesy of the Government of Yukon]

One of the techniques used to find gold at that time was borrowed from California mining: water monitors.  Monitors were also relatively inexpensive and highly effective.

Back then, as now, these monitors revealed not only gold, but a wealth of fossils.

Assistant Palaeontologist Elizabeth Hall organizing a days collection of bones in the tent at our field camp near Dawson city

[image of Paleontologist Elizabeth Hall organizing a day’s collection of bones at the field camp near Dawson City, courtesy of the Government of Yukon]

“I’m always pretty fascinated by these stories immediately post-Gold Rush of people finding mammoth skulls,” said Dr. Zazula.

One can see a number of black-and-white images of these and other fossil finds in Ice Age Klondike, written by Dr. Zazula and Duane Froese.  Finds such as this prompted museums to send representatives out to the region to bring back fossils for their collections. One such expedition in 1907 and 1908 is detailed in the Bulletin of the American Museum of Natural History in NY.

“Without the gold mining, these fossils would never be found,” Dr. Zazula continued, referring to today’s fossil discoveries. “They’re using heavy equipment and other types of equipment to move this frozen ground because [it] is essentially locked in permafrost that wouldn’t be accessible without the gold mining.”

Upper section

Looking upstream at 2011 stripping operation

Unsampled tehpra (inaccessible) visible in wall of monitoring drain

TK-11-03TK-11-06

QCreek mine - LOVE THIS - monitor and permafrost - DawsonFieldwork_2011_TKuhn_029

 [images of gold mines near Dawson City, courtesy of the Government of Yukon]

Melting the frozen ground with these jets isn’t as damaging to fossils as one might imagine. Dr. Zazula described a process in which fossils are slowly removed from the heights of the muck—the frozen silt—and slide down into the valleys below.  When remarkable fossils are seen by paleontologists, the miners always accommodate them, enabling Dr. Zazula and his colleagues to excavate them manually.

Arctic Ground Squirrel fossil skull

 [fossil Arctic Ground Squirrel skull emerging from the muck, image courtesy of the Government of Yukon]

Zazula sampling squirrel nest

[Dr. Grant Zazula sampling frozen sediment along a vast wall of muck at Quartz Creek, courtesy of the Government of Yukon]

 

It’s an incredible partnership, one that began in the 1960’s with Dr. Richard Harington of the Canadian Museum of Nature. Dr. Harington made annual summer trips to visit the miners and discuss their fossil finds.  It is a tradition that Dr. Zazula and the other two Yukon paleontologists before him have maintained.

But consider the expanse of the Yukon Territory.

Land near Dawson City

[image of land near Dawson City, courtesy of the Government of Yukon]

And consider that, as Dr. Zazula stated, “[t]here are 100 active gold mines, give or take a few dozen here or there. And virtually all of them produce Ice Age fossils.  So in a summer, we can collect 5,000 specimens. There’s a lot of material coming out of the ground, and we’re trying to recover it as much of it as we can. It’s almost industrial-scale paleontology.”

This gave me pause: one Yukon paleontologist in the entire Territory, who—in addition to keeping in touch with about 100 mines in the Klondike—is responsible for all of the other fossil discoveries and research of the area.

“Prior to 3 years ago, it was really a one-person operation and that was me,” he admitted.

With the acquisition of funds, however, Dr. Zazula now has two assistants in the field: Elizabeth Hall and Susan Hewitson.

Elizabeth, Dick, and Susan with fossil Bootherium skull

[image of Elizabeth Hall, Dick Mol holding a fossil Bootherium skull, and Susan Hewitson, courtesy of the Government of Yukon]

They have established a field camp near Dawson City in close proximity to the gold mines. This enables them to be in daily contact with the miners in the short mining season—the end of May through October.  Dr. Zazula described this work as driving on back roads to the various mines, getting to know the miners and collecting the fossils released from the permafrost.

Elizabeth Hall recording a collection of bones at a gold mine

 

[image of Elizabeth Hall recording bones at a gold mine, courtesy of the Government of Yukon]

“Since we’ve done that, our collection has just exploded in terms of the quantity of material that we’re finding.  But it also really establishes and strengthens the relationships that we have made with the gold miners as well.”

Dawson City

 [Dawson City, the previous capital of the Yukon Territory until 1953; At the height of the Gold Rush, this town consisted of numerous wooden buildings and a sea of canvas tents behind them; image courtesy of the Government of Yukon]

“[The] program really hinges on [these] two people,” Dr. Zazula wrote. “Elizabeth Hall oversees most of the field work in the Klondike and is the collections manager, and Susan Hewitson [is] a field technician in the summer months.

“They do most of the work to collect the fossils, clean the fossils, identify the fossils, catalog the fossils and organize the database. This really frees up my time to write, do research and other outreach work.”

Elizabeth Hall holding baby mammoth

[image of Elizabeth Hall holding a baby mammoth tooth, courtesy of the Government of Yukon]

Elizabeth, Susan and her husband Alex collecting bones in 2012

[image of Elizabeth Hall, Susan Hewitson and her husband collecting fossils, courtesy of the Government of Yukon]

 

“Elizabeth started her as a summer student assistant about 10 years ago, and we finally created a full time position for her 3 years ago. We were also students together at Simon Fraser University. She is in the middle of completing a masters degree in Earth and Atmospheric Sciences at University of Alberta; her thesis work is on fossil microtine rodents from Old Crow, Yukon.”

Elizabeth Hall in field

[image of Elizabeth Hall, courtesy of the Government of Yukon]

“When it’s good for gold, it’s a good time to be an Ice Age paleontologist in the Yukon because there’s so much material that’s coming out of the ground.”

Tyler Kuhn

 [Paleontologist Tyler Kuhn with a mammoth tusk found at a placer mine in Dawson City, Yukon; courtesy of the Government of Yukon]

 

Again, an enormous thank you to Dr. Grant Zazula for his fascinating insight and most generous time.  

Thank you, again, to Dick Mol.  

And thank you to all of the gold miners who enable Dr. Zazula, Elizabeth Hall and Susan Hewitson to conduct their research and collect fossils!!

Dick Mol and Grant Zazula - Yukon

[image of Grant Zazula and Dick Mol, holding a steppe bison skull; taken by Florian Breier, courtesy of Dick Mol]

———————

Yukon Paleontology Program: http://www.tc.gov.yk.ca/palaeontology.html

Yukon Beringia Interpretive Centre: http://www.beringia.com/

Publications and articles referenced:

Exciting New Info About Mastodons and Humans – Yukon Paleontology, Part 1

“Good morning!”

It’s not just a greeting; it sounds like a proclamation.

The voice on the other end of the phone is deep, melodic, and—as our conversation progresses—punctuated with moments of laughter.  We have been discussing paleontology in the Yukon, and with each new detail, I begin to wonder why this territory is not making regular international headlines.

Dr. Grant Zazula’s work is fascinating, and it is neither a short phone call nor the only communication we’ve exchanged. And yet, it is all that I can do not to encourage him to keep going, long after social decorum dictates that he has been more than generous with his time.

Dr. Zazula and mastodon leg

[image of Dr. Grant Zazula with a mastodon ulna, part of the Earl Bennett mastodon, courtesy of the Government of Yukon]

Dr. Zazula is the Yukon paleontologist, a job that has only existed since 1996. His own tenure began in 2006.  With an office in Whitehorse, the capital of the territory, his work oversees an expanse of Canada that abuts Alaska.  It is a land of dramatic beauty, where colors dance in the sky and mountains tower in silent grandeur.

Embed from Getty Images

His most recent paper, co-written with 14 other people, made news throughout the world and continues to attract media attention. In it, the scientists present data that completely overturns previously believed information about extinct animals and the impact that humans may or may not have had upon their survival.

“[T]here were two radiocarbon dates in the literature from Yukon mastodons,” he explained in an email. “One that was ~18,000 and the other 24,000 years old.”

“Based on analysis of the paleoecology, that was a time when steppe-tundra grasslands covered Alaska, Yukon and Beringia. There were probably no trees, few shrubs and almost no standing water. It was very cold and, especially, dry. This seemingly is not good mastodon habitat. So either the dates were incorrect, or our understanding of mastodon ecology, behavior and adaptations need[s] to be revised.”

Various species of mastodon once existed throughout the world.  Although their fossils look elephantine, they are not believed to be direct ancestors of today’s elephants. They are, however, part of the same umbrella mammalian group: the Proboscidea (so-named for the trunks possessed by many—but not all–of their members).  In North America, that group contained the American mastodon (Mammut americanum), the woolly mammoth (Mammuthus primigenius), and the Columbian mammoth (Mammuthus columbi).

Cohoes mastodon

 [image of the Cohoes mastodon, NY State Museum, Albany; taken by the author]

Mastodons tended to have straighter tusks and were shorter than their mammoth cousins. They also ate hardier vegetation, food that required a much different tooth structure than mammoths.

ISM - Mastodon tooth

[image of mastodon tooth, courtesy of the Indiana State Museum]

ISM - Mammoth tooth

[image of mammoth tooth, courtesy of the Indiana State Museum; for more info about the differences between mammoths and mastodons, see this post.]

Parts of Siberia, Alaska and the Yukon were once connected in an area known as “Beringia.”  The Bering Strait did not yet exist, enabling animals and eventually the first humans to cross into our continent.  It is believed that humans arrived in what is now North America about 14,000 years ago.

And this is where the research of Dr. Zazula and his colleagues becomes particularly important.

Prior to their paper, one theory to mastodon extinction laid the blame upon first humans: it was proposed that they overhunted these animals.

Sampling 36 fossils and presenting 53 new radiocarbon dates, Dr. Zazula and his colleagues found that mastodons within Alaska and the Yukon were much, much older than the originally published dates.  In other words, their research suggests that mastodons from what was once Eastern Beringia were no longer present when the first humans appeared.

The path to this remarkable research did not happen overnight.

The foundation appears to have been laid by two different events: by the chance meeting of Dr. Zazula and a gold miner, and later, by the PhD work of a graduate student.

If one reads the acknowledgements on the aforementioned paper, Dr. Zazula references Earl Bennett as both the donor of a partial mastodon skeleton and his inspiration to learn more about mastodons within the Yukon.

“Earl is a great Yukoner,” Dr. Zazula wrote when asked about this. “He mined for gold underground in the winters with a pick and shovel, decades ago. He worked on big gold dredge machines. And, he loves paleontology.

“While mining, he made collections of Ice Age bones that were just left around the mining camp or were encountered while mining. He eventually amassed an amazing collection.

“In the early 1970’s a gold dredge on Bonanza Creek hit a skeleton of a mastodon. An incredibly rare find! Someone collected it and was looking to sell it. So, Earl bought the skeleton just to make sure that it never left the Yukon. He had it in his garage for decades.

“One day a mutual friend introduced me to him in a coffee shop, about a year after starting my job [as the Yukon paleontologist]. He said that he had a mastodon skeleton and wanted me to see it. I ‘corrected’ him, saying that it was more likely a mammoth, because we almost never find mastodons in the Yukon. He assured me he know the difference and said he would see me tomorrow at my office.

“The next day he backed his truck up and in it was a partial mastodon skeleton. I couldn’t believe it. There were several postcranial bones, some vertebra, scapula, parts of the skull and parts of the mandible with teeth. It was amazing. I wanted to find out how old it was, and that was one of the inspirations for this project. Earl is a good friend now and big supporter of our research.”

Bennett mastodon skeleton

[Paleontologist Grant Zazula with a partial American mastodon (Mammut Americanum) skeleton found on Bonanza Creek and donated to the Yukon fossil collection by Earl Bennett, from Ice Age Klondike, courtesy of the Government of Yukon]

That partial skeleton was indeed one of the many fossils sampled for the paper.

Dr. Jessica Metcalfe, one of the co-authors, also prompted this research when conducting work for her PhD.

“[S]he was doing a project looking at stable isotope ecology of mammoths and mastodons in various places in North America,” said Dr. Zazula.

Jessica Metcalfe with mammoth bone

[image of Dr. Jessica Metcalfe with mammoth bone, courtesy of the Government of Yukon]

Her work included Yukon fossils that were sent to the lab at the University of Arizona to be radiocarbon dated.   Those dates turned out to be older then 50,000 years old.

“So that’s what got me thinking,” he continued, “‘well, maybe those original published dates are wrong.’”

“The first step was to re-date [the specimens that had produced the original published dates]. The new dates turned out to be >50,000 years. So we knew there was a problem with the previous dates. We figured then we should date as many as we could get our hands on.”

This lead Dr. Zazula to connect with Dr. Ross McPhee, another co-author.

“I got in touch with him early because he oversees collections at the American Museum of Natural History, [and] he has a big interest and lots of experience working on Ice Age extinctions. [H]e’s an excellent writer and really kind of kept us going with some of the writings. He was really integral to keeping things together.”

The paper eventually involved a total of 15 people.

“I feel pretty strongly that if you worked on it and contributed to it, then you should be considered an author,” Dr. Zazula stated.  “So it ended up being a long list.”

One of the first aspects their paper addresses is the reason behind why the original published dates are incorrect: the dating analyses were contaminated by fossil conservation methods.

“Humic acids in soils can be absorbed by the bones and teeth and chemically bind themselves to the collagen,” he wrote, explaining further. “So, modern ‘young’ carbon in those acids basically contaminates the ‘old’ collagen in the ancient fossil. And, it can be tricky to remove.

“The same with consolidants in museums. Varnish, glue, and other substances to preserve fossils can be absorbed into the bone and chemically bind with the collagen in the bone. These substances probably contain young, modern carbon which messes up the radiocarbon dating measurements.”

When asked whether museums continue to use the same preservation products that contaminated the dates, he wrote, “Yes, for sure. The thing is now museums keep better records of what they use. Many of the fossils we dated were collected in the 1940’s or at least several decades ago. Museums were not that vigilant about keeping detailed records on those things then. Also, they seemed to put preservatives on everything. Now, at least if we know what was put on it, the chemistry can by developed to remove it. Most of the common preservatives now are soluble in alcohol or acetone and can be dealt with. The problem is when they are unknown.”

We discussed this further by phone.

“One thing about Alaska and the Yukon,” he said, “is that the Ice Age bones that come out of the ground are so well preserved because of the permafrost. In other localities, say, the deserts of the American Southwest or the Great Basin or the Plains, where bones have been out in the sun and [are] dry and hot, they [sometimes] fall apart really easily when they come out of the ground. They need to be glued and consolidated with these various types of museum products.

“So you kind of have to weigh the different values.

“Say if it’s a specimen that’s already been radiocarbon dated, and it starts to slowly disintegrate, well, then you kind of have to intervene or else you’re just going to end up with a box of dust and broken bone. You have to decide whether the importance is more with display or preservation of the morphology versus needing to radiocarbon date or other types of analysis.

“[Y]ou have to look at the pro’s and con’s of whether the sampling [for radiocarbon dating] will ruin the specimen or not, and what is the potential information that can be gained by doing it. To me, I feel that having a research collection [in the Yukon], it’s all about research and learning new things from these specimens.”

Ultimately, I wondered whether Dr. Zazula expected the results he and his colleagues uncovered.

“I wasn’t quite sure,” he answered. “I had the gut feeling that these previously published radiocarbon dates were probably wrong. It didn’t make a lot of sense ecologically to have mastodons living in the far North when it was seemingly habitat they couldn’t live in: habitat with grassland and cold, dry steppe tundra conditions, no trees and very few shrubs.

“But there [was] also a part in the back of my mind that thought, ‘well, if those [previously published dates] were right, that’s maybe even more interesting because they are telling us something about mastodons and their behavior and their adaptations that we didn’t know before.’”

————

It was a great honor and pleasure to connect with Dr. Grant Zazula! Not only patient with my myriad questions, he is an adept and fascinating ambassador for the Yukon. A Mammuthus columbi-sized thank you to him!

A Mammuthus columbi-sized thank you to Dick Mol, as well, who is the reason behind this post!

Dick Mol with horse skull

[image of Dick Mol with fossil horse skull, found near Dawson City, Yukon; courtesy of the Government of Yukon]

Yukon Paleontology Program: http://www.tc.gov.yk.ca/palaeontology.html

Articles and publication referenced:

 

Listen to Dr. Zazula discuss his paper on the CBC’s Quirks & Quarks: http://www.cbc.ca/radio/quirks/quirks-quarks-for-dec-6-2014-1.2864605/mastodons-made-an-early-exit-from-the-north-1.2864634

 

[REPOST] The Mammoth Site and Dr. Larry Agenbroad – Renowned Paleontologist

Ask Dr. Larry Agenbroad what his most exciting discovery as a paleontologist has been, and his response is: “Too many to select just one.”

He cites, among the top three, discoveries with which you might already be very familiar:

• the most complete pygmy mammoth skeleton found to-date,

• an 11,000 year-old bison kill site,

• and the Jarkov mammoth in Siberia.

These discoveries—like his work—are from all over the world.

Dr.LarryAgenbroad

(Image of Dr. Agenbroad and fossil replica, courtesy of Dr. Larry Agenbroad. If you, like me, thought this was a saber-toothed cat fossil, guess again! See the end of the post for more info*.)

Pygmy mammoths are the smallest of the known species, and their remains have been found on Wrangel Island (off of Russia) and on the Channel Islands (off of California). It is thought that their size evolved from their isolated existence on islands, an environment that would not be able to support multiple Columbian or woolly mammoths.

Dr. Agenbroad led the team that excavated the most complete pygmy mammoth skeleton yet found. A cast of the fossil can be seen at the Channel Islands National Park Visitor Center, and a replica of this fossil in-situ is in the Santa Barbara Museum of Natural History. The SBMNH’s website states that Dr. Agenbroad has found 66 more fossil sites on the islands.

Nebraska is home to the Hudson-Meng Bison Kill Site. Named after Bill Hudson and Albert Meng, who found it by accident in 1954, it eventually produced almost 600 separate bison fossils. These fossils represent a species of bison that does not exist today. Dr. Agenbroad began excavation here in the 1970’s. Different theories exist regarding why so many 11,000 year-old remains of the same species are in one place.

You can see Dr. Agenbroad in the Discovery Channel documentary, “Raising the Mammoth”. It details the discovery and research of the Jarkov mammoth in Siberia. Dr. Agenbroad is among other well-known paleontologists who worked together on this remarkable find: an enormous mammoth encased in ice. That documentary also gives you a peak into the Mammoth Site in Hot Springs, South Dakota, where he is the Chief Scientist and Site Director.

Recently accredited by the American Alliance of Museums, the Mammoth Site houses the largest collection of mammoth fossils in the United States. It is open to the public year-round.

Their website lists that they recently found the 61st mammoth fossil this summer; 58 of which are Columbian mammoths, 3 are woolly mammoths.

Woolly mammoths may dominate mainstream imagination, but the species that lived throughout the U.S. was actually the largest (and possibly the least hairy) representative of that species: the Columbian mammoth.

The Mammoth Site, a growing museum on 8.5 acres of land, is built over the initial excavation area. And that area was originally intended as part of a housing development. Construction came to a halt in 1974 when mammoth fossils were found.

Joe Muller, COO/Business Manager of the museum, describes the initial structure built in 1975 as a modest plywood construction. An addition was made to that structure in 1976 and 1978.

“That [addition] remained over part of the site so people could come in and look a little bit at some of the fossils,” he said in a phone interview.

“[Researchers] would excavate outside (there was a self-imposed hiatus from excavating for 1980-1982 and 1984-1985 until a building could be constructed over the site) until in 1986, the building was built over the sinkhole area. Then in 1990 we enclosed a lobby area with a gift shop.”

Today, there is an additional 4000 square feet of enclosed exhibit space, plus 8,000 square feet for laboratory, bone storage, research library, offices, bathrooms and storage (which opened in May 2001).

And–to give readers an additional sense of the size of the museum space–there is a crane.

“We have a crane in the sinkhole area,” he continued, “so that we can remove the fossils, take them to the ‘mammoth elevator’, and then take them to the basement to the laboratory work on.”

The sinkhole is the reason Hot Springs has such a wealth of fossils. As described both on the museum’s website and in the acclaimed book by Adrian Lister and Paul Bahn (Mammoths: Giants of the Ice Age), the area known as “the sinkhole” was created about 26,000 years ago. It was a 65-foot-deep pond framed by steep banks, with an even deeper section through which flowed warm water. Warm water and vegetation are believed to be the temptations that caused mammoths to venture into the pond. Getting out of that pond—or rather, the inability thereof–is believed to have been the cause of their death.

The many fossils that remain today—mostly young male mammoths—were eventually covered and preserved by mud and sediment over thousands of years. A number of these fossils remain in-situ and available to the public at the Mammoth Site. Excavation within the site continues each year, and it is an opportunity for which one can apply—paleontological background or not. Muller advises that one can apply “to come and excavate for five days with Roads Scholars (May & October), then EarthWatch volunteers come for two two-week sessions; basically the month of July.” Amongst the Ice Age fossils found are camel, llama, prairie dog, a giant short-faced bear, wolf, and numerous invertebrates.

The book Mammoths: Giants of the Ice Age lists the surprising fact that mammoth hyoid bones and bile stones have been recovered here.

Dr. Agenbroad explained that “a hyoid bone is a set (5) of bones that support the tongue. Often only one of the set is found.” When asked how something so seemingly small such as a bile stone could be found and identified, he said that is “a non-osteological specimen”, and that they use “chemical analyses to identify them, comparing and contrasting them to modern elephant bile stones.”

Dr. Adrian Lister, one of the authors of the aforementioned book, is listed as one of the former “Visiting Scholars” to the Mammoth Site. Designed and implemented by Dr. Agenbroad, the Visiting Scholar program invites researchers to study at the site.

“I wanted to ‘cross-pollinate’ ideas, methods, and theories with international experts,” wrote Dr. Agenbroad in an email. In response to whether other sites engage in similar activities, he continued, “It is rare for other sites to invite and support a visiting scholar (usually due to budget restrictions).”

The impressive list of “Visiting Scholars” also includes, among others, Adriana Torres of Mexico; Dr. Laura Luzi of Italy; Dr. Daniel Fisher (now of the University of Michigan, one of the many researchers who worked on “Lyuba”, the best preserved baby mammoth found to-date, and mammoth-tusk expert); Dick Mol of the Netherlands;  Dr. Evgeny Maschenko, Dr. Alexei Tikhonov and Dr. Gennady Baryshnikov of Russia; Dr. Ralf Kahlke of Germany; and Dr. Jim Burns of Canada.

In terms of tourists, approximately 100,000 people visit the Mammoth Site each year from all over the world.

“Our town is about 3700 people,” Muller said, referring to Hot Springs, SD, “so when we bring in 100,000 visitors a year, it’s a big economic impact for the city.”

From the United States, visitors from Minnesota and Colorado top the list (visitors from South Dakota itself come in third!), but people from as far as South Africa, Korea, and Australia—among so many other foreign countries—also travel to the site.

The Mammoth Site received accreditation by the American Alliance of Museums in October of 2013.

“We are in the top 6% of museums in the United States, as only about 5.8% of the estimated 17,500 museums are accredited.”

The accreditation process is apparently a lengthy process, and not every museum is successfully accredited upon their initial application. Policies regarding everything from the artifacts and exhibits (its “collections”) to its financial policies are reviewed and evaluated. The Mammoth Site, Muller stated with well-deserved enthusiasm, “made it the first time!”

“We have a $2.2 million major gift campaign going on now,” Muller continued. “$1.6 million is for a ‘Learning Center’, which includes a couple of theatres and a kind of a gathering area. We are planning a bid letting in August and construction to start in October, with a May 2015 opening date.”

The website offers a “buy-a-brick” program as part of that campaign. It is clear that the growth of this museum is–in no small part–a result of the dedication of everyone who works at and is involved with the Mammoth Site. Muller attributes that to a close-knit community within the museum.

“We’re pretty much like a family, and that’s what the reviewers with American Alliance of Museums said that they were really impressed with: how the staff gets along and works together.”

——————————————————————————

*Dr. Agenbroad is pictured with a short-faced bear replica.

The Mammoth Site: http://www.mammothsite.com/

You can apply to excavate at the Mammoth Site! http://www.mammothsite.com/earthwatch.html OR http://www.mammothsite.com/elderhostel.html

Buy-a-brick to help the Mammoth Site campaign! http://mammothsite.pinnaclecart.com/index.php?p=product&id=1064

Pygmy Mammoth, Channel Islands National Park: http://www.nps.gov/chis/historyculture/pygmymammoth.htm

Pygmy Mammoth, Santa Barbara Natural Museum of History: http://www.sbnature.org/exhibitions/199.html

Latin names of mammoth species mentioned:

Pygmy mammoths = Mammuthus exilis

Woolly mammoths = Mammuthus primigenius

Columbian mammoths = Mammuthus columbi

(Earlier post with Dr. Dan Fisher: https://mostlymammoths.wordpress.com/2013/09/10/mammoth-article-qa-dr-daniel-fisher-renowned-paleontologist/)

A Mammuthus columbi-sized THANK YOU to Dr. Larry Agenbroad and Joe Muller for their time, their generous insight, and their work at the Mammoth Site! An equally large thank you to Presston Gabel, Diana Turner and for all who are involved with the work in that museum!

Dr. Brooke Crowley – Secrets Revealed from Mammoths & Mastodons in the Cincinnati Region

It may seem unlikely to uncover details about what an animal ate thousands of years after its extinction, absent of so much of the flora and fauna that co-existed with that animal.

It might seem even more improbable to illicit that information from fossilized teeth alone.

And yet, this is exactly what Dr. Brooke Crowley and Eric Baumann of the University of Cincinnati have done.

Brooke and Eric Baumann on Kardung La

[image of Eric Baumann and Dr. Brooke Crowley on Khardung La, India; courtesy of Dr. Crowley)

They sampled molars from eight different mammoths and four mastodons, each with a known provenance in the Cincinnati region. Analyzing stable isotopes within each tooth provided information not only about each animal’s diet, but also its habitat.

“Isotopes in our tissues,” Dr. Crowley, Assistant Professor of Quaternary Paleoecology, explained in a phone interview, “are environmental integrators.”

“What we like to say is that isotope values in an animal’s tissues can tell you something about its life. That could be the diet, it could be the environment the animal inhabits, or, in the case of strontium, it could be the actual locality where it lives.”

Over the past 30 years, studying stable isotopes has become an increasingly popular method of understanding both paleontological and archaeological finds in more depth.

These chemical signatures reveal details incorporated within the body over its lifetime and remain in its bones past its death. In other words, what one eats and drinks leave traces of elements that point back to that very same diet and to the region from which one drank water. That organic material has footprints, and scientists—using mass spectrometers and other types of analysis—can read and interpret them.

Remarkably, these chemical footprints remain, even after thousands upon thousands of years. And teeth, with their sturdy crystalline structure, seem to offer reliable stable isotope data.

Dr. Crowley and recent graduate Eric Baumann described their research in a paper to be published in Boreas. Carbon isotopes revealed broad information about what these twelve proboscideans ate; strontium and oxygen isotopes uncovered the region and climate in which these animals lived.

They began their research expecting to uncover that the two species were nomadic, that their teeth were discovered in areas geographically distant from their place of origin. They also expected that mammoths and mastodons ate different types of vegetation.

While their research confirmed the different diet, it provided surprising results for habitat: with the exception of one mastodon, all of these animals actually lived and remained within the Cincinnati region.

In response to why they originally thought these animals might be nomadic, Dr. Crowley pointed to the behavior of existing species.

“Most large animals aren’t sedentary.”

“In general,” she explained, “big creatures move a fair amount; they have large stomachs and they eat a lot of food. And there may be different reasons for moving. It could be a dietary need, it could be there’s some particular nutrient in the soil that they want from time-to-time, or there may be a particular region they like for birthing or mating.”

We see this today in humpback, gray and blue whale populations on either side of the North American continent, migrating from warmer regions in the ocean to colder regions thousands of miles north.

“African elephants, in particular, are typically very destructive by nature. They are what we call ‘environmental engineers.’ Their behavior changes the environment around them.”

Perhaps the most notable affect elephants leave in their wake are the trees they knock down. Consider, too, that elephants eat 160 – 300+ pounds of vegetation a day per elephant.

“[T]hey heavily modify an area. Then they move and modify another area. And they typically have pretty large home ranges. Some populations seasonally migrate from one place to another; others are just more continuously on the move.”

Embed from Getty Images

But, she cautions, “we can’t necessarily use that information to interpret the behavior of extinct species. They’re not necessarily that closely related. But it is something we have to go on.”

In their research, the authors include data from water samples taken from rivers and creeks in Ohio and Kentucky.

What, one might wonder, do modern-day water samples have to do with ancient teeth and their composition?

Strontium within water reflects the geology from which it came. This information is stored within teeth, thereby leaving yet more footprints the scientists can interpret.

Of the types of isotopes analyzed, Dr. Crowley explained that “[a] lot more work has been conducted on carbon and oxygen. So we didn’t really need to establish a local baseline for either of those two isotopes. But strontium’s a little less studied, and we didn’t know what sort of regional variability to expect.

“Without any comparative baseline, it’s hard to interpret what strontium in the animals might mean. We could say, ‘well, they’re all really similar’, but if we didn’t really know what to expect for this region, we wouldn’t know if they’re similar to the region or if all of those animals may have come from somewhere else. So we needed to establish a local baseline.”

In other words, they needed to understand the chemical signatures within local water in order to see if they matched the chemical signatures within these teeth.

“[This is] the first step,” she continued, “in what will hopefully be a long-term research direction: thinking about North American fauna and ecological change over time here on our own continent.”

When asked if this meant she would study other extinct animals or continue researching mammoths and mastodons, her response was “potentially both.”

“Currently I’m [working on a] project using strontium isotopes to look in a little more depth at particular individuals.”

Brooke and a bison scapula

[image of Dr. Brooke Crowley with a bison scapula; courtesy of Dr. Crowley]

She referenced a mastodon from Michigan as an example.

“[W]e’ve sampled little increments of his tusk to see how he moved during his lifetime.”

“One drawback of teeth,” she mentioned, “is that they just give you a relatively brief snapshot in time, whereas a tusk gives you a continuous record of an individual’s life.”

But she is equally interested in what she described as “big-scale patterns” of behavior across various species. And in this research, ‘behavior’ refers to details about their diet, and whether specific species roamed or remained in a specific region.

“If there is any living taxa that we could sample,” she added, “it would be interesting to see how they may have changed, even if they didn’t go extinct.”

“There’s interesting work that’s been done,” she said, referring to research of one of her colleagues, “[regarding the origins of] fossil deposits that indicates mastodons may have retreated to a particular part of the United States just before the Terminal Pleistocene.”

The Pleistocene is a period of time on earth that dates from about 2 million years ago through about 11-10, 000 years ago. The ‘Terminal Pleistocene’ refers to an extinction event within this period.

“Prior to the Terminal Pleistocene, they were found all over the United States. At the Terminal Pleistocene, they’re only found in a little tiny patch of the United States. Something affected their distribution. And I call it ‘retreat’ because it’s a much smaller distribution than they had before.

“By analyzing isotopes in bones and teeth, we would potentially be able to build off of these fossil distributions to paint a more interesting ecological picture of the Terminal Pleistocene.”

Painting more interesting ecological pictures is a strong focus of Dr. Crowley’s work. A scientist who has travelled extensively throughout the world, her research has taken her to the Canary Islands, the Dominican Republic, Trinidad and Madagascar. Reading her blog and her website, one recognizes a distinct fondness for the aforementioned African country.

Embed from Getty Images

When asked if Madagascar was where her heart was, she responded, “In many ways, yes. Part of that is that I’ve devoted a lot of time and energy into learning a lot about it. So, now I’m invested.”

“There are certainly conservation issues in our own country,” she continued, “but there are other places–and Madagascar is one of them–where there’s a real need to try to make some changes happen now for future conservation and biodiversity management.”

“Up until recently, the recent past of Madagascar was rather understudied. It turns out that there are a lot of interesting questions that are still unanswered.”

Her website, Agoraphotia.com, describes her specific interests:

I investigate ecological interactions among living and recently extinct animals using stable isotope biogeochemistry. My interests include niche partitioning, conservation biology, and paleoecology. I am particularly interested in the causes and consequences of recent extinctions, and the ecological repercussions of habitat fragmentation and degradation.

She has studied fossilized rodents, lemurs and orangutans; she has researched climate change; she has studied plants and soil.

She lists research projects in which she has been involved:

•Assessing the utility of stable oxygen isotopes in distinguishing dietary niches.

•Distinguishing isotopic niches of fossil rodents in the Dominican Republic.

•Establishing the stable isotope ecology of modern and Prehistoric Trinidad.

•Exploring ecological change following human settlement on the Canary Islands.

•Identifying responses of the animal community to climate change and human impacts in Madagascar.

•Quantifying spatial variability in bioavailable strontium and assessing changes in mobility patterns of extinct and extant North American megafauna.

Prior to the University of Cincinnati, she lectured at the University of Toronto and volunteered at the Royal Ontario Museum in the OWLS (Open the World of Learning to Students) program.

She describes herself as “a relatively new professor in Cincinnati”, one who actively works to try and include students into her research projects. In this, she feels she has been successful, as she has had a number of students involved in her postdoctoral and graduate research and currently has students working with her in the lab.

The study of proboscidean teeth that lead to the paper to be published in Boreas was, she said, “originally designed to be a student project.”

Given her vast and varied experience, one might wonder why the focus was extinct North American fauna.

Explaining that most of her students are either from Ohio or the surrounding region, she said, “It’s a little more relevant for them to think about animals that lived in their backyard than animals that lived on the other side of the planet.”

This, too, is why they used teeth from the Cincinnati Museum of Natural History, rather than the collections of other neighboring state museums.

Brooke in Madagascar2

[image of Dr. Crowley in Madagascar next to a sign that warns visitors that “Lake Ravelobe is forbidden” and that “Crocodiles attack”; courtesy of Dr. Crowley]

“Many of the reasons that I do what I do and that I am where I am is because of other people who have helped me along the way or inspired me. And really one of the biggest reasons that I wanted to go into academia in the first place was because I feel like I have been empowered in many ways to try to make a difference.

“And I feel like that’s something that I can share with others and then try to make a difference by empowering others and helping them find their way and be compassionate as well.

“So that’s sort of my goal.”

She chuckled. “I don’t know how much I have really met that goal, but I do try, and I’m still pretty new to being a professor. So, I’m finding my way. It’s a challenge, but it’s a good learning experience, and I find it to be pretty rewarding.”

Brooke on a promontory in Tenerife

[image of Dr. Crowley on a promontory in Tenerife, Canary Islands; courtesy of Dr. Crowley]

———————————–

A Mammuthus primigenius-sized THANK YOU to Dr. Brooke Crowley for her generous time, help and fascinating responses to my questions!  What a great honor to connect with her!

You can read the paper in Boreas, Stable isotopes reveal ecological differences amongst now-extinct proboscideans from the Cincinnati region, USA:  http://onlinelibrary.wiley.com/doi/10.1111/bor.12091/abstract

I had a very difficult time grasping the concept of isotopes. This is due to my struggle with chemistry in general and not a reflection of the gracious people below who took the time to try to help me understand it.  I extend sincere thank you’s to:

  • Dr. Brooke Crowley
  • my dad
  • my sister-in-law who studies science
  • Dr. Suzanne Pilaar Birch (@suzie_birch)
  • Ariel Zych (@Arieloquent) and Science Friday (@scifri)

If you are interested in understanding more, here is further reading:

  1. Dr. Brooke Crowley, Stable Isotope Ecology: http://crowleyteaching.wordpress.com/courses/stable-isotope-ecology/
  2. Stable Isotopes in Zooarchaeology: http://sizwg.wordpress.com/bibliography/
  3. New insight from old bones: stable isotope analysis of fossil mammals, by Mark Clementz: http://www.mammalogy.org/articles/new-insight-old-bones-stable-isotope-analysis-fossil-mammals
  4. Applications of Stable Isotope Analysis, K. Kris Hirst: http://archaeology.about.com/od/stableisotopes/a/si_intro.htm

Dick Mol – Renowned Mammoth Expert: Fossil Hunting in the Sea

‘Fossil-hunting’ often brings to mind remote locations filled with rocks, sparse vegetation and a bright, merciless sun.

But Dick Mol–an internationally renowned paleontologist–is part of a team that regularly uncovers fossils in an unusual place: the ocean.

Dick MolDick Mol holding Ice Age bison skull found in the North Sea, image courtesy of Rene Bleuanus and Dick Mol

 His expeditions take place upon the North Sea, a large expanse of ocean between the East coast of the United Kingdom and the coasts of several other European countries such as the Netherlands, Belgium, and Germany up through to Norway.

 

Embed from Getty Images
“The North Sea is very rich,” wrote Dick Mol in an email. “Ever since 1874, fishermen have brought large quantities of bones and molars ashore.”

He himself has written articles about these finds, describing how the area is routinely dredged, enabling large ships passage on this navigational route. This dredging is what helps uncover fossils deposited there so many thousands of years ago. Coupled with trawling—a method of fishing that pulls weighted nets along the sea floor—these fossils are then brought to the surface.

“I learned about the Ice Age mammal remains, trawled by fishermen,” he explained, “from the curator of the Geological and Mineralogical Museum in Leiden, now the NCB Naturalis (Netherlands Center for Biodiversity). At that time, the attic of the museum was full of large bones of trawled mammoth bones, skulls and lower jaws. It was very impressive.”

Trawling boat, Stellendam harborFisherman preparing trawling nets as the ship leaves Stellendam harbor for the North Sea, image courtesy of Hans Wildschut and Dick Mol

“I remember,” he continued, “that in November 1992 I brought the late Dr. Andrei Sher, a renowned mammoth expert from Moscow, to the museum. When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world. This was recorded by a film crew making a documentary on mammoths in the Netherlands. Once in a while, I rewatch this brief documentary again, and it gives me very good memories of a longtime ago.”

“When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world.” — Dick Mol, describing the reaction of Dr. Andrei Sher to a collection of mammoth fossils from the North Sea at the NCB Naturalis in the Netherlands

Known to the world as Dick Mol, his name is actually Dirk Jan Mol, and he has been researching mammoths and other Pleistocene fauna for decades. One cannot study mammoths without becoming acquainted with his name and his work.

In response to what prompted his career in mammoths, he wrote, “I grew up on the border with Germany. Around the town of Winterswijk a lot of different geological sediments and fossils can be found from the Triassic, Cretaceous, Oligocene, Miocene, Pliocene and Holocene eras. In different quarries and clay-pits you could collect fossils, but none were of mammoths or remains of other Ice Age creatures.”

“I have been, since 1968, fascinated by mammoths. In the literature, you could read that these prehistoric animals stood up to 5 meters at shoulder (which was exaggerated, of course). I wanted to know more about mammoths and their ancestors. I wanted to find my own mammoths, but it seems that the mammoth has found me!”

“I wanted to find my own mammoths, but it seems that the mammoth has found me!” — Dick Mol

His enthusiasm for the topic has lead him to become a visiting scientist in 1990 and 1994 at the Mammoth Site in Hot Springs, South Dakota—part of the “Visiting Scholar” program designed by Dr. Larry Agenbroad. He has co-authored numerous papers over the years, and his books include Mammoths (published 1993) and, more recently, Mammoths and Mastodons of the Haute-Loire (published 2010), a bilingual book he co-authored with French paleontologist, Frédéric Lacombat.

Scientists and explorers from all over the world have invited him to help excavate their discoveries: some of the most notable finds include the Jarkov woolly mammoth in Russia (Mammuthus primigenius), the Nolhac steppe mammoth in France (Mammuthus trogontherii), and parts of a mastodon skeleton in Greece (Mammut borsoni), in which the longest tusks found to-date were uncovered (502 cm in length).

Queen Beatrix of the Netherlands knighted him for his work in paleontology in 2000. In addition, he is President of Mammuthus Club International and has been involved in the international conference related to mammoth research for years.

His family’s personal collection of fossils exceeds 30,000 specimens that have been used for educational purposes and scientific studies.

Today, he is a Research Associate at the following institutions:

For all of his accolades and accomplishments, Dick Mol is a very accessible and kind man. One witnesses his infectious enthusiasm in these two videos about his work in the North Sea:

 

Trawling for Mammoths: http://www.bbc.co.uk/programmes/p01q0gfr

A Mammoth Task: http://www.bbc.co.uk/programmes/p01q29mg

 

“Over the years, tons and tons of bones have been trawled by fishermen in their nets,” he reiterated. “Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”

“Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”–Dick Mol

“In the meantime, I have organized 43 mammoth fishing expeditions on the North Sea using big beam trawlers. Quite spectacular and always a good catch. Doing these expeditions gave us very good insight into those areas that are very productive and those areas in which Pleistocene fossils are scarce.”

Given the enormous number of fossils brought up from dredging, it doesn’t take a lot of imagination to wonder whether there might be exciting fossil discoveries just waiting to be found if one could go even deeper.

“Yes, for sure,” he agreed. “Most of the bones trawled by the fishermen have been washed out of the seabed by currents. The Eurogully area, off the coast of the province of South-Holland, was dredged from 13 to 40 meters below sea level. At approximately 23-26 meters, there is a rich layer with bones and teeth from the Late Pleistocene. Deeper, there is a layer containing an interglacial fauna (110.000-130.000 BP) including Hippopotamusses and straight-tusked elephants. This is true for the entire southern bight of the North Sea.”

Private collector with femur of the so-called straight-tusked elepahnt, North Sea

Private collector with the femur of the so-called straight-tusked elephant from the North Sea,image courtesy of Hans Wildschut and Dick Mol

But the cost of such an underwater excavation might be prohibitive.

“Once, I used a diver on one of the expeditions. Visibility was very poor, and it was not successful. But some divers in the past have found some mammoth remains. Amongst others, a diver brought up a complete mammoth tusk.”

Aside from the need to desalinate fossils found in the North Sea, they are not physically treated any differently than fossils one finds on land. And despite the wealth of fossils found thus far, Dick Mol does not have any favorites.

“For me,” he wrote, “every bone, bone fragment or remnant is unique and tells us a story….”

Mammoth tibia, freshly trawled, with fish... (1)

Mammoth tibia freshly trawled from the North Sea with fish, image courtesy of Hans Wildschut and Dick Mol

Keep in mind, however, that these fragments and bones are not found together.

Paleontology is like detective work: terrestrial excavations include mapping by grid, pictures, and notes related to where each bone is found. All of these details help paleontologists better understand what species it is and what happened to that animal before and after it died.

The bones found in the North Sea are pulled up individually in a mass of fish and other debris.

Without any of the clues available to someone digging on land, this begs the question: can one determine to which species a bone belongs in isolation?

“[A]fter spending more than 40 years of my life identifying isolated skeletal elements (we have never retrieved a complete skeleton from the North Sea bed) again and again, using comparative collections, it is possible to identify the specimens as soon as they are on the deck of the vessel.”

“Sometimes,” he added, “I need to use literature, but in most cases, an experienced anatomist can do it right away.”

And what about the isolated teeth that have been found in abundance?

“[A]t least three different species of mammoths are well-documented: from the Early Pleistocene the southern mammoth, (Mammuthus meridionalis); from the Middle Pleistocene the steppe mammoth, (Mammuthus trogontherii); and from the Late Pleistocene the woolly mammoth, the icon of the Ice Age, (Mammuthus primigenius). The molars of these species are quite different and easy to tell apart from each other by an experienced specialist.”

Grooves and marks upon the bones give rise to questions about who or what caused them: humans or other Pleistocene animals? And how can one tell the difference?

“Hyena gnawing marks and other predators are well-known and, in general, easy to recognize. Of course, you need some training and experience. Sometimes, especially in large bones, one can see the deep grooves in the so-called material spongiosa caused by hyena (pre)molars. Hyena gnawing marks are very often found in the skeletal remains of woolly mammoths and woolly rhinoceroses. The ice-aged hyena was very common on the Late Pleistocene mammoth steppe environment. Cut marks caused by human activity are completely different from those of predators.”

The “quality and quantity” of the fossils in the North Sea are two things that surprise him the most.

“We have huge collections, and we are constantly learning from them.”

Storage private collection Urk (1)

Private fossil collection storage, image courtesy of Hans Wildschut and Dick Mol (Dick Mol is pictured on the left)

Highlighting mammoth teeth

Please click on this (or any) image to see it in more detail, image courtesy of Hans Wildschut and Dick Mol; highlighting by author

“Recently, many collectors are also focusing on small mammal remains (micro-mammals like voles and lemmings). These remains can be found on the beaches of the North Sea where Pleistocene sediments have been added to strengthen the coastline. Some collectors have hundreds and hundreds of small molars of the entire small mammal fauna. These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”

“These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”–Dick Mol

There are two questions that come to mind regarding the volume of fossils collected so far: where are these fossils stored and how long does it take to catalog and study such collections?

“It is a continuous process,” he stated, referring to the length of time needed to catalog and study the fossils.

But in terms of where they are stored, he wrote, “[t]he NCB Naturalis (Netherlands Center of Biodiversity Naturalis in Leiden) has a huge collection of fossil bones from both the North Sea, as well as from dredging operations in the floodplain of our rivers like Rhine, Meuse and IJssel. Really, a huge collection.”

“Using about 200 skeletal elements of mammoths of almost the same size, same age and same gender, we compiled a skeleton for museum display, a huge male individual. Another extensive collection is housed at the Natural History Museum in Rotterdam. Here, a huge collection of Pliocene and Pleistocene marine mammals is stored. Most of these marine mammal remains have been trawled from the seabed as well, and some of these animals coexisted together with terrestrial mammals like mammoths and other large animals. The marine mammals were living in the paleodeltas.”

Compilation skeleton woolly mammoth, NCB Naturalis Leiden (1)

 

Woolly mammoth skeleton at the NCB Naturalis Leiden Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“And there are some private collections. Some of them are very well documented. They are like professional collections, and they are available and often used for scientific studies.”

“The co-operation between non-professional and professional paleontologists is extremely good in the Netherlands. For more than three decades, both groups have been working closely together on mammoths and mammoth fauna, scoring very interesting results like 14C, stabile isotopes, new species, etc.”

Dick Mol himself posed the final question: “What can we learn from the mammoth bones trawled from the North Sea between the British Islands and the Netherlands?

“The rich terrestrial mammal remains trawled teach us that the North Sea between Britain and the Netherlands was once dry land,” he explained. “The British Islands were connected with the mainland of Europe during the entire Pleistocene or Ice Age (2.580.000 – 11.500 BP). That area was inhabited by different faunas.”

“In the Early Pleistocene, it was a savannah-like environment, dominated by the southern or ancestral mammoths, (Mammuthus meridionalis). In the Middle Pleistocene, it was a steppe-like environment dominated by the steppe mammoth, (Mammuthus trogontherii), and in the Late Pleistocene, it was a cold, dry and almost treeless steppe dominated by woolly mammoths, (Mammuthus primigenius).”

Dick Mol - compilation skeleton

Woolly mammoth skeleton at the Hellevoetsluis Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“At the end of the Pleistocene, this landscape disappeared, caused by dramatic change of climate. It became warmer and warmer, and ice–which blanketed the northern hemisphere–started to melt. Melted water filled up lower countries, and the vast plain became ocean. We know this area today as the ‘North Sea’, and it reached its present sea level about 8,000 years ago. The mammoth steppe disappeared and the mammoth fauna became extinct. This extinction is what we need to accept; it is not dramatic.”

“These events—of which we can learn from the North Sea fossils–show us that we are on a living planet and extinction belongs to it.”
————-

A Mammuthus trogontherii-sized THANK YOU to Dick Mol for his generous and detailed answers to my many, many questions; for his time, his wisdom and his thoughtfulness! What a truly great honor and a great pleasure!!

Dick Mol

 

Dick Mol, image courtesy of Hans Wildschut and Dick Mol

Dick Mol’s papers and research: http://hetnatuurhistorisch.academia.edu/DickMol

The Eurogeul—first report of the palaeontological, palynological and archaeological investigations of this part of the North Sea:  http://www.sciencedirect.com/science/article/pii/S1040618205000649

For fascinating pictures and in-depth descriptions of mastodons and mammoths, Mammoths and Mastodons of the Haute-Loire is a great book (published 2010, in English and in French):  http://www.amazon.fr/Mammouths-Mastodontes-Haute-Loire-Dick-Mol/dp/2911794974/

If you are interested in seeing more of Hans Wildschut’s exciting work, here are links provided by Dick Mol:

Trawling and fossils:

Hans Wildschut – trawling for fossils

Hans Wildschut – fossil finds

Hans Wildschut – trawling for fossils, December 2010

Hans Wildschut – exciting fossil finds and collection (Urk)

Remie Bakker and the creation of the life-sized model of the Mastodon of Auvergne:

Hans Wildschut – Remie Bakker’s work