Eliann Stoffel – Unlocking the Secrets of a Forgotten Mammoth

A rather large bone, revealed by his bulldozer, prompted William McEvoy and his crew to cease work on the road and call the police. The police then called the local archaeological society, who, in turn, called an archaeologist at the local Natural History Museum.

When word got out that a mammoth had been discovered, visitors began pouring in to see the site.  Just a few miles outside of the town of Kyle in Saskatchewan, Canada, the excavation of these fragile bones from the hard clay was witnessed by an ever-growing number of people.  It is estimated that 20,000 visitors came to see the site that autumn in 1964.

Embed from Getty Images

 

Eventually, the plaster casts protecting the bones were taken to the Natural History Museum (now known as the Royal Saskatchewan Museum); radiocarbon dating was conducted.  Possible museum displays and skeletal reconstructions were discussed.

And then?

Nothing.

Once the cause of great local excitement, the bones of the Kyle Mammoth faded from view.

The references above to archaeology are not errors.  Although the bones found were paleontological in nature, the focus on the find—and, indeed, the very reason they were recently resurrected—was to determine whether there was any evidence of human-proboscidean interaction.  When no stone tools were recovered in the surrounding sediment and with no obvious signs of butchering on the bones, interest in the fossil seems to have collectively disappeared.  For over 50 years, the various bones found on that stretch of road have been shelved in the Museum’s collections.

“I had always planned on doing my thesis at the University of Saskatchewan and I knew I wanted to do my thesis on hunting and butchering strategies utilized by Paleoindian people,” explained Eliann Stoffel, a recent graduate, in an email.

Her interest was not specific to any one species of megafauna. She hoped to study any and all large animals ancient people may have hunted: camels, bison, horse, proboscidea.

“I had approached my supervisor, Dr. Ernie Walker, with this topic and he had spoken with a member of the Saskatchewan Archaeological Society, Frank McDougal, who had suggested taking a look at the Kyle Mammoth.”

Which is how the long-forgotten fossil came back into view in 2015.

“We knew that the mammoth belonged to a time when people were in North America and actively hunting mammoths so we had the possibility of finding some sort of evidence of humans on the Kyle mammoth.”

This evidence is rare in the area known as the Northern Great Plains, an area that encompasses Saskatchewan (as well as another Canadian province and five U.S. states).

“It was one of those projects,” she said later by phone, “that, as soon as it came up, I couldn’t turn it down.  It needed to be done.”

Travelling between Saskatoon and Regina (where the Royal Saskatchewan Museum and the fossil are located), Eliann spent many hours studying and analyzing the bones from the 1964 excavation.  This included five boxes of bone fragments as well as 56 complete or near-complete bones, such as vertebrae, mandible, a partial tusk, and ribs.  Also included were ungulate bones, which—like the mammoth—did not comprise a full skeleton and did not present any clear association with its proboscidean fossil companion.

 

figure-4-1-kyle-mammoth-bones-eliann-stoffel-thesis

About 20% of the mammoth skeleton survived; image courtesy of Eliann Stoffel, University of Saskatchewan

 

Eliann’s thesis presents a comprehensive taphonomic analysis of the mammoth bones, and this was done because she and her advisors “knew that we needed to keep in mind that we might not find any evidence of human involvement.”

The idea of determining who or what made any kind of marks on a fossil seems like an overwhelming challenge.  This was not an animal that died the other day.  In this case, it died roughly 12,000 years ago. That is a considerable amount of time in which—after an animal is butchered, killed or otherwise dies of natural causes–it can be scavenged after death, it can be moved and scraped by natural elements, it can be affected by its fossilization, and then possibly affected by the process of discovery (in this case, by a bulldozer). How is anyone able to read the marks on fossil bones and know what they represent?

“[T]he first giveaway is the colour,” she wrote. “Bone, when it has been buried for a long time, tends to become stained from the surrounding sediment but only the outer surface. So when someone (an excavator) knicks the bone, the unstained inner portion of the bone is exposed and tends to be a lighter colour.

“The other indicator can be the clustering of marks. [With] butchering, there tends to be more than one cut mark on the bone in the same general area, usually at muscle attachment sites, and they tend to be orientated in the same direction. Rarely do you find cut marks that intersect each other. They are usually parallel. In accidental knick marks there is usually just the single mark and it tends to be located in a spot that you wouldn’t generally find cut marks (i.e. on joint surfaces or midshaft of a long bone).”

 

figure-b-15-kyle-mammoth-eliann-stoffel-thesis

 

Photo of the Kyle Mammoth right mandible from her thesis; courtesy of Eliann Stoffel, University of Saskatchewan

 

Contrary to initial review in the 1960s, Eliann discovered a few tantalizing signs that this mammoth may have, indeed, suffered from trauma induced by ancient humans.  From a suspicious-looking lesion to a possible puncture wound on vertebrae to a puzzling set of lines in a bone fragment, there was reason to wonder whether humans had been responsible for these scars.

Ultimately, however, the first two were determined to be pathological. The lesions conform to known understanding of malnutrition in the form of osteolytic lesions.

Knowing her hope to find evidence of human interaction, I asked if this was a bit of a disappointment.

“[I]t was a bit of a kick in the knees,” she admitted, “but still a super interesting avenue of study in terms of pathology. I am more than thrilled with my findings though!”

 

figure-5-5-kyle-mammoth-eliann-stoffel-thesis

figure-5-1-kyle-mammoth-eliann-stoffel-thesisImages courtesy of Eliann Stoffel, University of Saskatchewan

 

Another startling discovery appeared in what she describes as a “spongy” bone fragment, shown above, which contain traces of blood vessels.

“I remember bringing it to my supervisor and we both scratched our heads over it…So we called on our resident bioarchaeologist Dr. [Angela] Lieverse to take a look and she wasn’t sure but suggested possibly something vascular. Sure enough, when I searched for studies fitting that criteria, a couple articles turned up. So it seems that it is an occurring phenomena but possibly not that common,” Eliann wrote.

Ultimately, Eliann determined that this was a young male woolly mammoth (between 28 – 35 years old) that was still growing at the time of its death.  She estimates it was 328.66 cm (approximately 10.8 feet) tall.  While the large open wound on one of the vertebra points to a possible puncture wound from Clovis weaponry, other pathological features point to a mammoth suffering from malnutrition.

Eliann’s enthusiasm for those who helped her in her research was apparent.

“[T]he folks at the [Royal Saskatchewan M]useum were more than happy to help in any way possible,” she expressed, “and it is something that I have always appreciated! Also my major funders [were] the Saskatchewan Heritage Foundation, the Saskatchewan Archaeological Society, and, of course, the Department of Archaeology and Anthropology at the [University of Saskatchewan].”

More than just a strenuous academic endeavor, Eliann’s research has painted a picture that has been missing for decades on a significant local paleontological find.

“The [people in the] town of Kyle identify with this mammoth.  As you come into Kyle, there’s this statue of a mammoth.  Their sign that says ‘Welcome to Kyle’ has a picture of a mammoth on it.  It’s clear that they identify with it.”

 

 

A Mammuthus primigenius-sized THANK YOU to Eliann Stoffel—not only for her time in emails and by phone–but also for her gracious permission to use a number of pictures from her work!  Her thesis is fascinating and well written.  I recommend it to all!  Eliann, may you find many mammoths with evidence of human association in the future!

Another enormous thank you to Dr. Angela Lieverse, head of the Department of Archaeology and Anthropology at the University of Saskatchewan, who was also responsible for the generous use of images from Eliann’s thesis!

And I am very grateful to Dr. Emily Bamforth at the Royal Saskatchewan Museum for connecting me to Eliann! I could not have written this otherwise. THANK YOU!!

*****

References:

  1. The Kyle Mammoth: An Archaeological, Palaeoecological and Taphonomic Analysis, Eliann W. Stoffel, July 2016, University of Saskatchewan
  2. Shedding Some Light on the Kyle Mammoth, David Zammit, Swift Current Online, Nov. 13, 2016; the article that brought Eliann Stoffel and the Kyle Mammoth to my attention!
  3. PDF about the Kyle Mammoth from the Royal Saskatchewan Museum

Screenshot Kyle Mammoth RSM

Screenshot from the aforementioned PDF of the Kyle Mammoth, Royal Saskatchewan Museum

Advertisements

Meet Dr. Katy Smith – Mastodon Detective

If you imagine the Great Lakes region over 10,000 years ago, you might see large, hairy beasts with relatively straight tusks grazing around boggy areas or moving within dense forests.  Their fur and overall appearance might cause you to confuse them with woolly mammoths, but these are the mammoths’ shorter, stockier cousins.  And if any of them would let you get close enough to inspect their mouths, you’d see in an instant that their teeth are completely different than those of mammoths.

 

[image of contemporary boggy area in Alaska, courtesy Getty Images]

 

Whereas mammoths are believed to have eaten grasses and even flowers, mastodons needed teeth suited to the mastication of hardier stuff: shrubs, parts of trees, perhaps pinecones?   Mastodon teeth, with the bumps and ridges one might associate with carnivores, are easily recognizable as ‘teeth.’  Mammoths, in contrast, needed to grind food, producing teeth with spherical lengths of ridges across each tooth.

ISM - Mastodon tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.  Can you tell which tooth belongs to which species?]

 

ISM - Mammoth tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.]

And while woolly mammoths pervade popular culture and interest, there are some, like Dr. Katy Smith, Associate Professor of Geology at Georgia Southern University and Curator of the Georgia Southern Museum, who prefer their lesser-known cousins and have made fascinating contributions to our understanding of them.

Mastodon discoveries usually produce the fossils of a single animal, and rarely a complete skeleton. Rarer still, finding skeletal remains of multiple mastodons at the same site.

Such a unique discovery occurred in 2005, when more than 300 fossils were found in Hebron, Indiana.  Now known as the “Bothwell site,” it was originally going to be the location of the landowner’s pond.  Instead, Indiana State Museum paleobiologist Ron Richards and his crew uncovered bones that included numerous mastodons (Mammut americanum), giant beaver (Castoroides) and hoofed animals with even-toes (artiodactyls).

ISM - 2005 Bothwell Mastodon 2

 

ISM - 2005 Bothwell Mastodon 1

[images of the Bothwell site dig, courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 2.]

 

Four years later, the Bothwell site became the focus of Katy Smith, her dissertation, and two subsequent papers she co-wrote with Dr. Daniel Fisher at the University of Michigan.

But let’s take a moment to consider what paleontologists uncover. However rudimentary this may seem, it is important to note that bones are generally not discovered in neat order, intact and with each skeletal component attached where it would have been in the life of the animal.

Consider, too, that not all bones survive.  And those that do are often broken or in terrible condition.

So even at a site such as Bothwell, which produced lots of fossils, a paleontologist’s job is no less challenging.  The pieces of information are incomplete, mere clues to the animals that died there.

The questions, however, are profuse.

Why were so many animals found in that one spot?

If, as it is currently debated, mastodons shared behavioral traits with modern-day elephants, was this a family unit?

If so, was this group—like elephants–comprised largely of female and juvenile mastodons?

And why were other unrelated animals discovered among them?

Did a sudden disaster kill them all?  Were humans involved?

 

Embed from Getty Images

 

Sexual dimorphism is another way of referring to the traits that make an animal either female or male.  Some of us would assume, since mastodon pelvic bones were not among the Bothwell fossil assemblage, that the sex of these animals would remain unknown.

There were 13 mastodon tusks, only four of which were complete. And this, remarkably, is what prompted Katy Smith’s research.

“I wanted to know if I just had tusks, what can I do to figure out if I’m looking at a male or a female,” she explained by phone.

Katy Smith - measuring an African elephant tusk

 

[image of Dr. Katy Smith measuring an African elephant tusk in (what this author believes must be one of the greatest places on earth) the basement and fossil collection of the University of Michigan; courtesy of Dr. Katy Smith]

 

“Other people have looked at [sexual dimorphism], but I wanted to look at it specifically with the Bothwell mastodons, because they were inferred to be female, and female mastodons are less common in the fossil record than males.

“When I presented preliminary results from my research in a paleontology class, the professor said, ‘Why don’t you try multivariate analysis?’ And it just kind of spiraled from there.”

Multivariate analysis,’ as the name implies, means using more than one type of measurement or observation towards a hypothesis.  In other words, rather than simply using size as a determination of sexual dimorphism, applying numerous methods and statistics that support or disprove it.

Already, the amount of information scientists have pulled from tusks alone is fascinating.

Tusks are teeth.  They are described, in Dr. Smith’s dissertation as “hypertrophic incisors.” And, unlike human teeth, they continue to grow the entire life of the animal. So where we can simply look at a human tooth and know immediately whether it is from an adult or a child, the same cannot be done with tusks.

What their hardy structure records includes the age of the animal, growth in winter or summer months each year, their overall diet, and periods of nutritional stress.  (As described in an earlier post, Proboscidean molars can even provide details regarding where they roamed during life.)

But much of this information can only be gleaned from well-preserved, intact tusks, as well as from cutting into and examining their chemical composition.

“If you don’t know what the sex of the animal is before you look at tusk microstructure,” she said, “it can be hard to interpret what you’re looking at.”

Part of what Dr. Smith hoped to discover were similarities in the tusks where sex and age had already been determined.  If certain structural elements were the same across female mastodon tusks, such that they tended to differ from male mastodon tusks, this might help determine sexual dimorphism in future tusk discoveries.

She also hoped to discover any similarities between the tusks of extant elephants and mastodons.

Katy Smith -longitudinally bisected tusk

 

[image of longitudinally bisected tusk, courtesy of Dr. Katy Smith] 

 

Thus, she studied and measured tusks of both species from numerous museum collections. (Asian elephant tusks were not used, as female elephants of this species tend to have either tiny tusks or no tusks at all.)  She rather amusingly refers to the approximate amount of tusks involved as “5,000 pounds of tusk.”

Her dissertation and the two papers describe the type of analysis performed in detail.  Among them were canonical variates analysis (CVA) and discriminant function analysis (DFA).

“Fortunately, we didn’t have to cut into the tusks to do those measurements. You just insert a stiff wire into the pulp cavity.”

“We think about tusks sometimes as stacks of sugar cones, because they actually grow in a kind of [layered] cone structure. So you think about one sugar cone, and then you put another one inside that one and then another one inside that one and so on and so forth. And the last sugar cone is empty. There’s nothing in it. That represents the pulp cavity.”

“[Analyzing the] pulp cavity is probably one of the best single measurements that you can use to distinguish between male and females. [I]n females, that pulp cavity will terminate before the gum line, and in males, it will terminate after the gum line, closer to the tip.

“This is something that we saw in almost every mastodon. So it was kind of cool.”

 

Katy Smith - female mastodon

 

[image of female mastodon skull and tusks, courtesy of Dr. Katy Smith]

 

“If we could have cut every tusk, I would have,” she admitted, and laughed. “But it was a matter of collecting these measurements at different museums. And so I would just go there and collect all of them, and that was how we’d get the pulp cavity depth.”

“I’ve always been interested in paleontology,” she said when I asked her how she got started.

“I’m one of those kids who just never grew out of it. My parents used to take me to the museum all the time, and I used to spend hours and hours staring at the dinosaur dioramas there, just loving it.  I told my kindergarten teacher I wanted to be a paleontologist. I never changed! My 5-year-old self grew up and became a paleontologist.”

But her interests moved away from dinosaurs when she realized that their fossil record in Wisconsin, her home state, was rare to nonexistent.

After all, she said, “I started just wanting to explore what was underneath my feet.”

It wasn’t until grad school at Michigan State, where she met the late Dr. Alan Holman, that she realized her passion for mastodons.  His own interest in the species was infectious, and it was through him that she learned of the numerous mastodon (Mammut americanum) fossil discoveries in the area.

“Wow!” she said, recalling her initial reaction. “There are over 300 mastodons in Michigan. This is exciting!”

Katy Smith - male mastodon

[image of male mastodon skull and tusks, courtesy of Dr. Katy Smith]

Not surprisingly, she did her PhD work at the University of Michigan, home to Proboscidean expert Dr. Daniel Fisher, who was her advisor.

“I wanted to work with him,” she explained, “because I wanted to continue working on mastodons, and he had a couple of ideas for projects. One of them included this assemblage of mastodons from Indiana, which were—supposedly—all female.”

What she discovered regarding the Bothwell site is both thought-provoking and fascinating:

  • 8 tusks were determined to be female; the other 5 are unknown
  • the ages of the mastodons range between 19 and 31 years old
  • there is evidence that at least one juvenile might have been among them (a “juvenile tooth crown” was found)
  • given that two mastodons died in winter, and another two died either in late summer or early autumn, this indicates that the collective deaths of these animals didn’t happen at the same time (hence, not a single event)
  • none of the mastodons appeared to be under nutritional stress when they died
  • members of a family unit would be expected to have the same “isotope profiles”–chemical signatures in their teeth–but these do not

Based on the evidence provided, Dr. Smith wonders whether these animals were part of a meat cache for humans (members of the Clovis culture) that co-existed at that time.

But perhaps the single most remarkable result of her research is helping other paleontologists–who often have nothing more than a single tusk–determine the sex of that animal using her different types of analysis.

Prior to her dissertation, only one female mastodon tusk had been analyzed for growth rate.  To date, I am unaware of any other publication (paper or book) that helps detail the sexual dimorphism in mastodons by tusks alone.

When I remarked upon this, I asked her if others had cited her work.  Her response, after stating that others had, was equally fascinating to me.

“It’s always the hope as a scientist that you’re contributing in some way,” she said, “and you know that you’re contributing if somebody else is using what you’ve done.”

 

An enormous and sincere THANK YOU to Dr. Katy Smith for her generous and fascinating answers to my many questions, her gracious help when I had trouble understanding certain points, and for being so much fun with whom to connect! I cannot express how much I wish I could attend her classes, nor how fascinating I found her dissertation. I am profoundly grateful that she shared it with me!

A sincere thank you to my Dad, as well, for helping me understand tooth components (i.e.: dentin, cementum)!

**A quick reminder that I am neither a scientist nor a paleontologist, so any errors in this post are my own.

Bothwell Mastodont Dig, courtesy of Indiana State Museum; many thanks to Bruce Williams and Leslie Lorance!

—————

References:

 

Other references:

 

Cohoes mastodon size comparison

[image of sign in the NY State Museum illustrating the size difference between an extant elephant, a woolly mammoth and the Cohoes mastodon; picture taken by the author]

Dick Mol – Renowned Mammoth Expert: Fossil Hunting in the Sea

‘Fossil-hunting’ often brings to mind remote locations filled with rocks, sparse vegetation and a bright, merciless sun.

But Dick Mol–an internationally renowned paleontologist–is part of a team that regularly uncovers fossils in an unusual place: the ocean.

Dick MolDick Mol holding Ice Age bison skull found in the North Sea, image courtesy of Rene Bleuanus and Dick Mol

 His expeditions take place upon the North Sea, a large expanse of ocean between the East coast of the United Kingdom and the coasts of several other European countries such as the Netherlands, Belgium, and Germany up through to Norway.

 

Embed from Getty Images
“The North Sea is very rich,” wrote Dick Mol in an email. “Ever since 1874, fishermen have brought large quantities of bones and molars ashore.”

He himself has written articles about these finds, describing how the area is routinely dredged, enabling large ships passage on this navigational route. This dredging is what helps uncover fossils deposited there so many thousands of years ago. Coupled with trawling—a method of fishing that pulls weighted nets along the sea floor—these fossils are then brought to the surface.

“I learned about the Ice Age mammal remains, trawled by fishermen,” he explained, “from the curator of the Geological and Mineralogical Museum in Leiden, now the NCB Naturalis (Netherlands Center for Biodiversity). At that time, the attic of the museum was full of large bones of trawled mammoth bones, skulls and lower jaws. It was very impressive.”

Trawling boat, Stellendam harborFisherman preparing trawling nets as the ship leaves Stellendam harbor for the North Sea, image courtesy of Hans Wildschut and Dick Mol

“I remember,” he continued, “that in November 1992 I brought the late Dr. Andrei Sher, a renowned mammoth expert from Moscow, to the museum. When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world. This was recorded by a film crew making a documentary on mammoths in the Netherlands. Once in a while, I rewatch this brief documentary again, and it gives me very good memories of a longtime ago.”

“When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world.” — Dick Mol, describing the reaction of Dr. Andrei Sher to a collection of mammoth fossils from the North Sea at the NCB Naturalis in the Netherlands

Known to the world as Dick Mol, his name is actually Dirk Jan Mol, and he has been researching mammoths and other Pleistocene fauna for decades. One cannot study mammoths without becoming acquainted with his name and his work.

In response to what prompted his career in mammoths, he wrote, “I grew up on the border with Germany. Around the town of Winterswijk a lot of different geological sediments and fossils can be found from the Triassic, Cretaceous, Oligocene, Miocene, Pliocene and Holocene eras. In different quarries and clay-pits you could collect fossils, but none were of mammoths or remains of other Ice Age creatures.”

“I have been, since 1968, fascinated by mammoths. In the literature, you could read that these prehistoric animals stood up to 5 meters at shoulder (which was exaggerated, of course). I wanted to know more about mammoths and their ancestors. I wanted to find my own mammoths, but it seems that the mammoth has found me!”

“I wanted to find my own mammoths, but it seems that the mammoth has found me!” — Dick Mol

His enthusiasm for the topic has lead him to become a visiting scientist in 1990 and 1994 at the Mammoth Site in Hot Springs, South Dakota—part of the “Visiting Scholar” program designed by Dr. Larry Agenbroad. He has co-authored numerous papers over the years, and his books include Mammoths (published 1993) and, more recently, Mammoths and Mastodons of the Haute-Loire (published 2010), a bilingual book he co-authored with French paleontologist, Frédéric Lacombat.

Scientists and explorers from all over the world have invited him to help excavate their discoveries: some of the most notable finds include the Jarkov woolly mammoth in Russia (Mammuthus primigenius), the Nolhac steppe mammoth in France (Mammuthus trogontherii), and parts of a mastodon skeleton in Greece (Mammut borsoni), in which the longest tusks found to-date were uncovered (502 cm in length).

Queen Beatrix of the Netherlands knighted him for his work in paleontology in 2000. In addition, he is President of Mammuthus Club International and has been involved in the international conference related to mammoth research for years.

His family’s personal collection of fossils exceeds 30,000 specimens that have been used for educational purposes and scientific studies.

Today, he is a Research Associate at the following institutions:

For all of his accolades and accomplishments, Dick Mol is a very accessible and kind man. One witnesses his infectious enthusiasm in these two videos about his work in the North Sea:

 

Trawling for Mammoths: http://www.bbc.co.uk/programmes/p01q0gfr

A Mammoth Task: http://www.bbc.co.uk/programmes/p01q29mg

 

“Over the years, tons and tons of bones have been trawled by fishermen in their nets,” he reiterated. “Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”

“Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”–Dick Mol

“In the meantime, I have organized 43 mammoth fishing expeditions on the North Sea using big beam trawlers. Quite spectacular and always a good catch. Doing these expeditions gave us very good insight into those areas that are very productive and those areas in which Pleistocene fossils are scarce.”

Given the enormous number of fossils brought up from dredging, it doesn’t take a lot of imagination to wonder whether there might be exciting fossil discoveries just waiting to be found if one could go even deeper.

“Yes, for sure,” he agreed. “Most of the bones trawled by the fishermen have been washed out of the seabed by currents. The Eurogully area, off the coast of the province of South-Holland, was dredged from 13 to 40 meters below sea level. At approximately 23-26 meters, there is a rich layer with bones and teeth from the Late Pleistocene. Deeper, there is a layer containing an interglacial fauna (110.000-130.000 BP) including Hippopotamusses and straight-tusked elephants. This is true for the entire southern bight of the North Sea.”

Private collector with femur of the so-called straight-tusked elepahnt, North Sea

Private collector with the femur of the so-called straight-tusked elephant from the North Sea,image courtesy of Hans Wildschut and Dick Mol

But the cost of such an underwater excavation might be prohibitive.

“Once, I used a diver on one of the expeditions. Visibility was very poor, and it was not successful. But some divers in the past have found some mammoth remains. Amongst others, a diver brought up a complete mammoth tusk.”

Aside from the need to desalinate fossils found in the North Sea, they are not physically treated any differently than fossils one finds on land. And despite the wealth of fossils found thus far, Dick Mol does not have any favorites.

“For me,” he wrote, “every bone, bone fragment or remnant is unique and tells us a story….”

Mammoth tibia, freshly trawled, with fish... (1)

Mammoth tibia freshly trawled from the North Sea with fish, image courtesy of Hans Wildschut and Dick Mol

Keep in mind, however, that these fragments and bones are not found together.

Paleontology is like detective work: terrestrial excavations include mapping by grid, pictures, and notes related to where each bone is found. All of these details help paleontologists better understand what species it is and what happened to that animal before and after it died.

The bones found in the North Sea are pulled up individually in a mass of fish and other debris.

Without any of the clues available to someone digging on land, this begs the question: can one determine to which species a bone belongs in isolation?

“[A]fter spending more than 40 years of my life identifying isolated skeletal elements (we have never retrieved a complete skeleton from the North Sea bed) again and again, using comparative collections, it is possible to identify the specimens as soon as they are on the deck of the vessel.”

“Sometimes,” he added, “I need to use literature, but in most cases, an experienced anatomist can do it right away.”

And what about the isolated teeth that have been found in abundance?

“[A]t least three different species of mammoths are well-documented: from the Early Pleistocene the southern mammoth, (Mammuthus meridionalis); from the Middle Pleistocene the steppe mammoth, (Mammuthus trogontherii); and from the Late Pleistocene the woolly mammoth, the icon of the Ice Age, (Mammuthus primigenius). The molars of these species are quite different and easy to tell apart from each other by an experienced specialist.”

Grooves and marks upon the bones give rise to questions about who or what caused them: humans or other Pleistocene animals? And how can one tell the difference?

“Hyena gnawing marks and other predators are well-known and, in general, easy to recognize. Of course, you need some training and experience. Sometimes, especially in large bones, one can see the deep grooves in the so-called material spongiosa caused by hyena (pre)molars. Hyena gnawing marks are very often found in the skeletal remains of woolly mammoths and woolly rhinoceroses. The ice-aged hyena was very common on the Late Pleistocene mammoth steppe environment. Cut marks caused by human activity are completely different from those of predators.”

The “quality and quantity” of the fossils in the North Sea are two things that surprise him the most.

“We have huge collections, and we are constantly learning from them.”

Storage private collection Urk (1)

Private fossil collection storage, image courtesy of Hans Wildschut and Dick Mol (Dick Mol is pictured on the left)

Highlighting mammoth teeth

Please click on this (or any) image to see it in more detail, image courtesy of Hans Wildschut and Dick Mol; highlighting by author

“Recently, many collectors are also focusing on small mammal remains (micro-mammals like voles and lemmings). These remains can be found on the beaches of the North Sea where Pleistocene sediments have been added to strengthen the coastline. Some collectors have hundreds and hundreds of small molars of the entire small mammal fauna. These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”

“These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”–Dick Mol

There are two questions that come to mind regarding the volume of fossils collected so far: where are these fossils stored and how long does it take to catalog and study such collections?

“It is a continuous process,” he stated, referring to the length of time needed to catalog and study the fossils.

But in terms of where they are stored, he wrote, “[t]he NCB Naturalis (Netherlands Center of Biodiversity Naturalis in Leiden) has a huge collection of fossil bones from both the North Sea, as well as from dredging operations in the floodplain of our rivers like Rhine, Meuse and IJssel. Really, a huge collection.”

“Using about 200 skeletal elements of mammoths of almost the same size, same age and same gender, we compiled a skeleton for museum display, a huge male individual. Another extensive collection is housed at the Natural History Museum in Rotterdam. Here, a huge collection of Pliocene and Pleistocene marine mammals is stored. Most of these marine mammal remains have been trawled from the seabed as well, and some of these animals coexisted together with terrestrial mammals like mammoths and other large animals. The marine mammals were living in the paleodeltas.”

Compilation skeleton woolly mammoth, NCB Naturalis Leiden (1)

 

Woolly mammoth skeleton at the NCB Naturalis Leiden Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“And there are some private collections. Some of them are very well documented. They are like professional collections, and they are available and often used for scientific studies.”

“The co-operation between non-professional and professional paleontologists is extremely good in the Netherlands. For more than three decades, both groups have been working closely together on mammoths and mammoth fauna, scoring very interesting results like 14C, stabile isotopes, new species, etc.”

Dick Mol himself posed the final question: “What can we learn from the mammoth bones trawled from the North Sea between the British Islands and the Netherlands?

“The rich terrestrial mammal remains trawled teach us that the North Sea between Britain and the Netherlands was once dry land,” he explained. “The British Islands were connected with the mainland of Europe during the entire Pleistocene or Ice Age (2.580.000 – 11.500 BP). That area was inhabited by different faunas.”

“In the Early Pleistocene, it was a savannah-like environment, dominated by the southern or ancestral mammoths, (Mammuthus meridionalis). In the Middle Pleistocene, it was a steppe-like environment dominated by the steppe mammoth, (Mammuthus trogontherii), and in the Late Pleistocene, it was a cold, dry and almost treeless steppe dominated by woolly mammoths, (Mammuthus primigenius).”

Dick Mol - compilation skeleton

Woolly mammoth skeleton at the Hellevoetsluis Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“At the end of the Pleistocene, this landscape disappeared, caused by dramatic change of climate. It became warmer and warmer, and ice–which blanketed the northern hemisphere–started to melt. Melted water filled up lower countries, and the vast plain became ocean. We know this area today as the ‘North Sea’, and it reached its present sea level about 8,000 years ago. The mammoth steppe disappeared and the mammoth fauna became extinct. This extinction is what we need to accept; it is not dramatic.”

“These events—of which we can learn from the North Sea fossils–show us that we are on a living planet and extinction belongs to it.”
————-

A Mammuthus trogontherii-sized THANK YOU to Dick Mol for his generous and detailed answers to my many, many questions; for his time, his wisdom and his thoughtfulness! What a truly great honor and a great pleasure!!

Dick Mol

 

Dick Mol, image courtesy of Hans Wildschut and Dick Mol

Dick Mol’s papers and research: http://hetnatuurhistorisch.academia.edu/DickMol

The Eurogeul—first report of the palaeontological, palynological and archaeological investigations of this part of the North Sea:  http://www.sciencedirect.com/science/article/pii/S1040618205000649

For fascinating pictures and in-depth descriptions of mastodons and mammoths, Mammoths and Mastodons of the Haute-Loire is a great book (published 2010, in English and in French):  http://www.amazon.fr/Mammouths-Mastodontes-Haute-Loire-Dick-Mol/dp/2911794974/

If you are interested in seeing more of Hans Wildschut’s exciting work, here are links provided by Dick Mol:

Trawling and fossils:

Hans Wildschut – trawling for fossils

Hans Wildschut – fossil finds

Hans Wildschut – trawling for fossils, December 2010

Hans Wildschut – exciting fossil finds and collection (Urk)

Remie Bakker and the creation of the life-sized model of the Mastodon of Auvergne:

Hans Wildschut – Remie Bakker’s work