The Evolution Underground – Part 2: Behind the Scenes

“I still don’t understand why they were looking for alligator dens.”

My dad and I had been discussing the review I’d written about Dr. Anthony Martin’s latest book, “The Evolution Underground.”  He voiced this confusion with more concern for the overall safety (and perhaps sanity?) of the Emory professor and his students than an interest in what knowledge they hoped to gain.

To be fair, my dad hadn’t yet read this or any book about ichnology and was not familiar with the field.  My inability to make that part of the book clearer aside, it also spoke to a question I’d had this past December.  Speaking with him by phone, I asked Dr. Martin: Did he think more people know about ichnology as a result of his prolific work?

“I think,” he began thoughtfully, “through the books, [through] giving public talks, and [by blogging] about it, I’m fairly confident in saying, ‘yes, more people are more aware now of ichnology as a science.’ I think that ‘Dinosaurs Without Bones’ was a really good step [toward] popularizing ichnology as science, and then I think that ‘The Evolution Underground’ will take it another step further.”

Dr Anthony Martin courtesy of Carol Clark

Image of  Dr. Anthony Martin, courtesy of Emory University 

It is telling that, of the four books Dr. Martin has written so far, three of them focus on ichnology.  His handle on Twitter is @ichnologist.  Most of his blog posts feature concepts related to ichnology.  During our conversation, he chuckled and admitted he refers to himself as an “ichno-evangelist.”

Any physical remnant of an extinct or extant creature falls into ichnology: bites, scratches, footprints, marks indicating the drag of a tail, coprolites or scat.  Reading those traces—recognizing them for what they are—is a skill, and one for which there are relatively fewer reference points than the much older field of paleontology.*  Dr. Martin explains this in his first work with Pegasus Books, “Dinosaurs Without Bones.”  It is one thing to see a fossil femur, for example, and understand what it is.  Recognizing a fossil nest, however, or a fossil burrow, is considerably more challenging.  Without “search images” or reference points that help other scientists understand what to look for, such fossils might be easily missed.

beneski-tracks-and-raindrops

Detail of a slab of fossil footprints surrounded with what are believed to be fossil raindrops at the Beneski Museum at Amherst College, Massachusetts. Both the footprints and the raindrops are examples of ichnology. Picture taken by the author of this blog.

 

beneski-not-tracks

beneski-fascinating-trace-fossil-narrow

Can you tell what these are? I can’t, and, so far, neither can the experts.  As-yet unknown trace fossils at the Beneski Museum at Amherst College, Massachusetts; pictures taken by the author of this blog.

Figure 1: A brief summary of animal burrowing through time, from the Ediacaran Period through today.  Geologic eras on left, periods on right, MYA = millions of years ago, and red arrows indicate times of mass extinctions in the geologic past. (Image and caption used with permission from Pegasus Books)

 

“Sage scents wafted by on the wind and, in between scoops, I looked around at the nearby pine forests and rolling, high-plains grassland nearly everywhere else, then up at an expansive blue sky hosting white, fluffy clouds.  You might say I was in a country where the sky was big: Some people just call it ‘Montana.’” – page 87, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books

In the book, Dr. Martin describes participating in an excavation in the Blackleaf Formation that lead to the discovery of the first known fossilized burrow, found collectively by Dr. Martin, Yoshi Katsura, and Dr. David Varricchio of Montana State University.

This discovery—based solely on noticing the odd structure of sediment surrounding bones—is no small feat.  Looking at an image of this burrow, which you can see in Dr. Martin’s blog post here, I am amazed that anyone would be able to decipher what it actually is when working through layers of other rock, let alone when it was completely revealed.

Dr. Martin credits his mentor and former professor, Bob Frey, with guiding him in ichnology.  Both Dr. Varricchio and Dr. Martin were fellow students in his class, a class that seems to have been a road map for both of them in their future discoveries.

And while in this book Dr. Martin discusses many extant burrowers, he certainly addresses those found in the fossil record as well.

Figure 38: Early Cretaceous (130 mya) lobster burrow preserved as natural cast on bottom of limestone bed, Portugal.  Although the lobster’s body is not preserved, its leg impressions and body outline were left behind.  (Photo by Anthony J. Martin; image and caption used with permission from Pegasus Books)

The bigger picture behind these everyday observations of many holes in the ground, however, is that the long history of these burrowing invertebrates completely altered global environments, from the deepest sea to the highest mountains, and even affected the atmosphere and climate.  In short, the entire surface of our planet is built upon one big complex and constantly evolving burrow system, controlling the nature of our existence.” — page 14, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books

 

The quote above is the central theme of “The Evolution Underground.”  I wondered if he’d gained this perspective after completing the book, or if this was something he carried as he began writing.

“I did go in with that big picture idea about burrows having this overarching influence on all of our ecosystems,” he replied. “[That, we, too,] have this evolutionary heritage that [is] connected to burrows. So I did have that idea in mind, but it was really scattered. Really disparate.  Also, it wasn’t an original idea. Lots of other people really deserve credit for that, [and they are] cited in the endnotes of the book.

But, he said, “[w]riting the book definitely helped me pull together a lot of those previously separated ideas into the theme that I summarized as ‘burrows acting as the midwife in the birth of Gaia.’

“We can’t really talk about the evolution of ecosystems or the evolution of life without talking about burrows.”

Figure 16: Folk-art rendering inspired by the Lystrosaurus saga set during the Permian-Triassic transition (Chapter 5), with a cutaway view of a Lystrosaurus burrow. (Artwork by Ruth Schowalter and Anthony J. Martin; image and caption used with permission from Pegasus Books) — (The author of this blog wants to note, as Dr. Martin does in the endnotes, that his interest in the species was inspired by this piece by Annalee Newitz.)

Having written four books, did writing them get easier?

“It did get easier with each book,” he acknowledged. Then laughed. “But, of course, the word ‘easy’ is relative.”

“[‘The Life Traces of the Georgia Coast‘] was hard to write because it was so comprehensive.  It was almost 700 pages long; it had more than 800 peer-reviewed references. It’s an academic book, but I [also] wrote it for a popular audience.  So it’s a hybrid kind of book in that respect. That took four years from the acceptance of the book proposal to actually holding it in my hands.”

“And,” he added, “a book is not finished until I’m holding it in my hands.”

“In contrast to that, ‘Dinosaurs Without Bones’ was quick. That took me—from start to end—less than two years. I felt like [‘The Evolution Underground’] was a little bit easier than ‘Dinosaurs Without Bones,’ but that’s only because I used Pegasus Books again as the publisher. And I had the same editor: Jessica Case. With that said, it was still difficult to write because it covered so many different burrowing animals, [not to mention it covered] the last 560 million years!

“The main takeaway point of it is for people to better appreciate the world they don’t often see, and that’s the world below their feet. We might not even be here talking about burrowing animals if our earliest mammalian ancestors hadn’t burrowed.”

 

*This comment is not meant to hold one field over another. I have great respect for the skills needed for both paleontology and ichnology.

******

Thank you to Carol Clark, Senior Science Communicator at Emory University, for the wonderful picture of Dr. Martin!

A sincere and enthusiastic THANK YOU to Dr. Anthony Martin for his willingness to connect by phone and for his generous responses to my questions!  It was a pleasure and an honor to be able to speak with him, and—like his writing—he made it fun!  I eagerly (if impatiently) await any possible future work.  

FULL DISCLOSURE: The author of this blog loved Dr. Martin’s previous book with Pegasus, “Dinosaurs Without Bones,” and thus, jumped at the chance to review his latest work (fully predisposed to embrace it) by requesting a review copy from the publisher.  I am very grateful to Pegasus Books for the opportunity to do so. Being able to use such beautiful images from the book is a great honor! I am specifically grateful to Deputy Publisher, Jessica Case, with whom it was wonderful to work!!

******

References:

  1. The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet, Anthony J. Martin, Pegasus Books, 2017
  2. Dinosaurs Without Bones: Dinosaur Lives Revealed by Their Trace Fossils, Anthony J. Martin, Pegasus Books, 2014
  3. Life Traces of the Georgia Coast Blog, Anthony J. Martin

Evolution Underground

Advertisements

The Evolution Underground – Part 1: Book Review

Not all scholars write with the playfulness or the open curiosity found in books written by Dr. Anthony Martin, professor at Emory University.

In his second work with Pegasus Books, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” he opens with an anecdote about an outdoor class on an island off of the Georgia coast.  If you have any question about whether this book is for you, read those first several pages.

He, his colleague, Michael Page, and several students were mapping alligator dens.  While they’d witnessed many active dens from a safe distance, in this instance, they were exploring those long abandoned by their former occupants.  They were, he explained to the reader, in the middle of the forest where a now-nonexistent canal once ran.  Without water, there would, of course, be no alligators.

Only he was wrong.  And this was pointed out when a student noticed teeth within the den.

Embed from Getty Images

Picture of alligators by Michael Leggero, courtesy of Getty Images

You will need to read the book to find out what happens, but this first chapter perfectly encapsulates how Dr. Martin writes. If you want to learn about any aspect of our world from a scientific and curious lens, here is an author you might want as your guide.  He is no stranger to presenting enormous volumes of information in an easily digestible way, nor is he one to make it cumbersome. His wit and sense of adventure make learning fun.  Moreover, there is no arrogance in his books.  The words “so far,” “unknown,” and “as yet” are sprinkled throughout the text.  He is not afraid to admit when science (or, indeed, when he himself!) has been mistaken, when theories are disproven, educational assumptions found incorrect. He writes with the understanding that our scientific knowledge–like life itself–is still evolving. And like so much of his writing, it only serves to prompt the reader into thoughtful reverie: where might science take us in the future? What will be revealed years, decades, centuries from now, and how will this impact the world?  The creative and wondrous question “What if?” floats like a butterfly through its chapters.

Dr. Martin describes how these seemingly abandoned alligator dens may have indeed been dug when water was present, but that even despite drought, parts of their internal structures may connect with the groundwater table.  Water within the den may have also attracted thirsty birds and animals on the island.  He and his students later found the ravaged corpses and bones from such unsuspecting creatures both in and outside of other forest dens.

“All of this trace evidence told us the alligators could switch from aquatic to terrestrial predation if necessary, like a shark deciding it was going to turn into a lion.  This surprising behavioral transformation and adaptability in alligators was made possible through their dens, which during times of environmental change became all-purpose hunting lodges.” – page 7, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books

And thus begins his exploration of the animals—including humans!—worms, insects and birds that have created sanctuaries below ground.  Burrows, he posits, have made survival possible throughout Earth’s history, and these underground homes have made and continue to make enormous impact on life above ground.

“The bigger picture behind these everyday observations of many holes in the ground, however, is that the long history of these burrowing invertebrates completely altered global environments, from the deepest sea to the highest mountains, and even affected the atmosphere and climate.  In short, the entire surface of our planet is built upon one big complex and constantly evolving burrow system, controlling the nature of our existence.” – page 14, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books

Dr. Martin encourages us to take a closer look at a generally overlooked part of our world. That closer look involves fascinating details about creatures and places one may not have realized existed.  Burrowing owls–with their photogenic and often amusing images–may be familiar, but perhaps not so much the charming fairy penguins of Tasmania, or the alarming assassin flies associated with gopher tortoise burrows, who both kill and start digesting their hapless victims with an injection of neurotoxins and enzymes.

Embed from Getty Images

Image of burrowing fairy penguins, courtesy of Getty Images
Embed from Getty Images

Slideshow of burrowing owls, courtesy of Getty Images

 

Perhaps the most powerful section of the book—one that really drives home his point about survival underground—involves the eruption of Mount St. Helens in Washington State thirty-seven years ago.

Whether you’ve only read about it or whether you’ve actually visited, Mount St. Helens is a stark reminder of how devastating Nature can be.  After a couple of months of earthquakes, the volcano erupted in the morning of May 18th, 1980. Not only did it obliterate everything in its path, the eruption and its aftermath killed 57 people and all of the wildlife within about 150 square miles.

Embed from Getty Images
Image of Mount St. Helens before the eruption of 1980, photo by Jeff Goulden, courtesy of Getty Images

Embed from Getty Images

Image of Mount St. Helens today, courtesy of Getty Images

Here, Dr. Martin uses creative nonfiction (or ‘narrative nonfiction’) to help illustrate how, despite this traumatic event, the entire area made a comeback.  Loowit, a sweet little fictional pocket gopher, takes the reader through some of the natural events that transformed devastation into renewal and rebirth.

He describes her home: a branching set of underground tunnels and rooms that can reach up to 500 feet long, complete with food storage areas, latrines, and other chambers. Although undeterred by snow, she was, at the time of the eruption, comfortably ensconced in her burrow.  This saved her.  He takes us through how she emerges after the eruption, her confusion, her tentative steps back into a new world above ground, how she and other survivors may have eventually formed communities.

In sum, in a world that now knew mostly death and destruction, these pocket gophers not only survived, but kept surviving, and in so doing, helped bring life back to an area that did not outwardly appear to contain much.

…these little ecosystem engineers began terraforming the previously desolate landscape, first by helping plants take root and grow. Each individual pocket gopher was capable of overturning more than a ton of soil each year…” – page 262, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books
Embed from Getty Images

Image of a pocket gopher, courtesy of Getty Images

Of the 55 mammal species in the area of Mount St. Helens in May 1980, only 14 survived the volcanic eruption and its collateral damage. Surface-dwelling elk, deer, black bears…and all other large- to medium-size mammals perished. On the other hand, nearly all the small mammals that lived were burrowing rodents…One of the few non-rodent survivors was the tiny Trowbridge’s shrew (Sorex trowbridgii), which (not coincidentally) is also a burrower.  Pocket gophers are active year round, but many other small-mammal species were both underground and still hibernating when the eruption took place.  The fortuitous timing of this disaster at the transition between winter and spring thus greatly enhanced the chances of these minutest of mammals to emerge and thrive.  Of the rodents that had already come out of hibernation, nocturnal species were doubly lucky to have already retired for the day in their burrows when the blast occurred.  Had the volcano erupted at night, many more would have died.” – page 264, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books

For the pocket gopher populations that survived the eruption of Mount St. Helens in 1980, their collective actions were the key to turning a desolate, monochromatic landscape back into a vibrant and verdant one.  From a geological perspective, their effects were astoundingly quick, with partial ecological restoration apparent within just five years of the eruption. Consequently, pocket gophers and other burrowing animals that lived beyond May 18, 1980, send a powerful message about the benefits of burrows for surviving such an ecologically traumatic events, as well as for their role in restoring an ecosystem after it is nearly destroyed.” – pages 266-267, “The Evolution Underground: Burrows, Bunkers, and the Marvelous Subterranean World Beneath Our Feet,” by Dr. Anthony J. Martin, Pegasus Books

 

I want more books like “The Evolution Underground” and “Dinosaurs Without Bones.”  Books that tickle my intellect and my sense of humor.  Books that pull me in with their interesting anecdotes, their engaging playfulness, their sensitivity to all genders (ie: not referring to all humans as “mankind” or simply “man”), and their ability to make me think outside the pages.

When I read a book and am left not only with the satisfaction that comes from something that I’ve enjoyed but also an eagerness for more, I know I’ve found a talented author.

Dr. Anthony Martin is, indeed, a talented author.

 

******

A sincere and enthusiastic THANK YOU to Dr. Anthony Martin for his willingness to connect by phone and for his generous responses to my questions!  It was a pleasure and an honor to be able to speak with him, and—like his writing—he made it fun!  I eagerly (if impatiently) await any possible future work.  

FULL DISCLOSURE: The author of this blog loved Dr. Martin’s previous book with Pegasus, “Dinosaurs Without Bones,” and thus, jumped at the chance to review his latest work (fully predisposed to embrace it) by requesting a review copy from the publisher.  I am very grateful to Pegasus Books for the opportunity to do so. I am specifically grateful to Deputy Publisher, Jessica Case, with whom it was wonderful to work!

Dinosaurs Without Bones

Meet Dr. Katy Smith – Mastodon Detective

If you imagine the Great Lakes region over 10,000 years ago, you might see large, hairy beasts with relatively straight tusks grazing around boggy areas or moving within dense forests.  Their fur and overall appearance might cause you to confuse them with woolly mammoths, but these are the mammoths’ shorter, stockier cousins.  And if any of them would let you get close enough to inspect their mouths, you’d see in an instant that their teeth are completely different than those of mammoths.

 

[image of contemporary boggy area in Alaska, courtesy Getty Images]

 

Whereas mammoths are believed to have eaten grasses and even flowers, mastodons needed teeth suited to the mastication of hardier stuff: shrubs, parts of trees, perhaps pinecones?   Mastodon teeth, with the bumps and ridges one might associate with carnivores, are easily recognizable as ‘teeth.’  Mammoths, in contrast, needed to grind food, producing teeth with spherical lengths of ridges across each tooth.

ISM - Mastodon tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.  Can you tell which tooth belongs to which species?]

 

ISM - Mammoth tooth

 

[image courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 1.]

And while woolly mammoths pervade popular culture and interest, there are some, like Dr. Katy Smith, Associate Professor of Geology at Georgia Southern University and Curator of the Georgia Southern Museum, who prefer their lesser-known cousins and have made fascinating contributions to our understanding of them.

Mastodon discoveries usually produce the fossils of a single animal, and rarely a complete skeleton. Rarer still, finding skeletal remains of multiple mastodons at the same site.

Such a unique discovery occurred in 2005, when more than 300 fossils were found in Hebron, Indiana.  Now known as the “Bothwell site,” it was originally going to be the location of the landowner’s pond.  Instead, Indiana State Museum paleobiologist Ron Richards and his crew uncovered bones that included numerous mastodons (Mammut americanum), giant beaver (Castoroides) and hoofed animals with even-toes (artiodactyls).

ISM - 2005 Bothwell Mastodon 2

 

ISM - 2005 Bothwell Mastodon 1

[images of the Bothwell site dig, courtesy of Ron Richards, Indiana State Museum, for this post: Mammoths and Mastodons in Indiana – Part 2.]

 

Four years later, the Bothwell site became the focus of Katy Smith, her dissertation, and two subsequent papers she co-wrote with Dr. Daniel Fisher at the University of Michigan.

But let’s take a moment to consider what paleontologists uncover. However rudimentary this may seem, it is important to note that bones are generally not discovered in neat order, intact and with each skeletal component attached where it would have been in the life of the animal.

Consider, too, that not all bones survive.  And those that do are often broken or in terrible condition.

So even at a site such as Bothwell, which produced lots of fossils, a paleontologist’s job is no less challenging.  The pieces of information are incomplete, mere clues to the animals that died there.

The questions, however, are profuse.

Why were so many animals found in that one spot?

If, as it is currently debated, mastodons shared behavioral traits with modern-day elephants, was this a family unit?

If so, was this group—like elephants–comprised largely of female and juvenile mastodons?

And why were other unrelated animals discovered among them?

Did a sudden disaster kill them all?  Were humans involved?

 

Embed from Getty Images

 

Sexual dimorphism is another way of referring to the traits that make an animal either female or male.  Some of us would assume, since mastodon pelvic bones were not among the Bothwell fossil assemblage, that the sex of these animals would remain unknown.

There were 13 mastodon tusks, only four of which were complete. And this, remarkably, is what prompted Katy Smith’s research.

“I wanted to know if I just had tusks, what can I do to figure out if I’m looking at a male or a female,” she explained by phone.

Katy Smith - measuring an African elephant tusk

 

[image of Dr. Katy Smith measuring an African elephant tusk in (what this author believes must be one of the greatest places on earth) the basement and fossil collection of the University of Michigan; courtesy of Dr. Katy Smith]

 

“Other people have looked at [sexual dimorphism], but I wanted to look at it specifically with the Bothwell mastodons, because they were inferred to be female, and female mastodons are less common in the fossil record than males.

“When I presented preliminary results from my research in a paleontology class, the professor said, ‘Why don’t you try multivariate analysis?’ And it just kind of spiraled from there.”

Multivariate analysis,’ as the name implies, means using more than one type of measurement or observation towards a hypothesis.  In other words, rather than simply using size as a determination of sexual dimorphism, applying numerous methods and statistics that support or disprove it.

Already, the amount of information scientists have pulled from tusks alone is fascinating.

Tusks are teeth.  They are described, in Dr. Smith’s dissertation as “hypertrophic incisors.” And, unlike human teeth, they continue to grow the entire life of the animal. So where we can simply look at a human tooth and know immediately whether it is from an adult or a child, the same cannot be done with tusks.

What their hardy structure records includes the age of the animal, growth in winter or summer months each year, their overall diet, and periods of nutritional stress.  (As described in an earlier post, Proboscidean molars can even provide details regarding where they roamed during life.)

But much of this information can only be gleaned from well-preserved, intact tusks, as well as from cutting into and examining their chemical composition.

“If you don’t know what the sex of the animal is before you look at tusk microstructure,” she said, “it can be hard to interpret what you’re looking at.”

Part of what Dr. Smith hoped to discover were similarities in the tusks where sex and age had already been determined.  If certain structural elements were the same across female mastodon tusks, such that they tended to differ from male mastodon tusks, this might help determine sexual dimorphism in future tusk discoveries.

She also hoped to discover any similarities between the tusks of extant elephants and mastodons.

Katy Smith -longitudinally bisected tusk

 

[image of longitudinally bisected tusk, courtesy of Dr. Katy Smith] 

 

Thus, she studied and measured tusks of both species from numerous museum collections. (Asian elephant tusks were not used, as female elephants of this species tend to have either tiny tusks or no tusks at all.)  She rather amusingly refers to the approximate amount of tusks involved as “5,000 pounds of tusk.”

Her dissertation and the two papers describe the type of analysis performed in detail.  Among them were canonical variates analysis (CVA) and discriminant function analysis (DFA).

“Fortunately, we didn’t have to cut into the tusks to do those measurements. You just insert a stiff wire into the pulp cavity.”

“We think about tusks sometimes as stacks of sugar cones, because they actually grow in a kind of [layered] cone structure. So you think about one sugar cone, and then you put another one inside that one and then another one inside that one and so on and so forth. And the last sugar cone is empty. There’s nothing in it. That represents the pulp cavity.”

“[Analyzing the] pulp cavity is probably one of the best single measurements that you can use to distinguish between male and females. [I]n females, that pulp cavity will terminate before the gum line, and in males, it will terminate after the gum line, closer to the tip.

“This is something that we saw in almost every mastodon. So it was kind of cool.”

 

Katy Smith - female mastodon

 

[image of female mastodon skull and tusks, courtesy of Dr. Katy Smith]

 

“If we could have cut every tusk, I would have,” she admitted, and laughed. “But it was a matter of collecting these measurements at different museums. And so I would just go there and collect all of them, and that was how we’d get the pulp cavity depth.”

“I’ve always been interested in paleontology,” she said when I asked her how she got started.

“I’m one of those kids who just never grew out of it. My parents used to take me to the museum all the time, and I used to spend hours and hours staring at the dinosaur dioramas there, just loving it.  I told my kindergarten teacher I wanted to be a paleontologist. I never changed! My 5-year-old self grew up and became a paleontologist.”

But her interests moved away from dinosaurs when she realized that their fossil record in Wisconsin, her home state, was rare to nonexistent.

After all, she said, “I started just wanting to explore what was underneath my feet.”

It wasn’t until grad school at Michigan State, where she met the late Dr. Alan Holman, that she realized her passion for mastodons.  His own interest in the species was infectious, and it was through him that she learned of the numerous mastodon (Mammut americanum) fossil discoveries in the area.

“Wow!” she said, recalling her initial reaction. “There are over 300 mastodons in Michigan. This is exciting!”

Katy Smith - male mastodon

[image of male mastodon skull and tusks, courtesy of Dr. Katy Smith]

Not surprisingly, she did her PhD work at the University of Michigan, home to Proboscidean expert Dr. Daniel Fisher, who was her advisor.

“I wanted to work with him,” she explained, “because I wanted to continue working on mastodons, and he had a couple of ideas for projects. One of them included this assemblage of mastodons from Indiana, which were—supposedly—all female.”

What she discovered regarding the Bothwell site is both thought-provoking and fascinating:

  • 8 tusks were determined to be female; the other 5 are unknown
  • the ages of the mastodons range between 19 and 31 years old
  • there is evidence that at least one juvenile might have been among them (a “juvenile tooth crown” was found)
  • given that two mastodons died in winter, and another two died either in late summer or early autumn, this indicates that the collective deaths of these animals didn’t happen at the same time (hence, not a single event)
  • none of the mastodons appeared to be under nutritional stress when they died
  • members of a family unit would be expected to have the same “isotope profiles”–chemical signatures in their teeth–but these do not

Based on the evidence provided, Dr. Smith wonders whether these animals were part of a meat cache for humans (members of the Clovis culture) that co-existed at that time.

But perhaps the single most remarkable result of her research is helping other paleontologists–who often have nothing more than a single tusk–determine the sex of that animal using her different types of analysis.

Prior to her dissertation, only one female mastodon tusk had been analyzed for growth rate.  To date, I am unaware of any other publication (paper or book) that helps detail the sexual dimorphism in mastodons by tusks alone.

When I remarked upon this, I asked her if others had cited her work.  Her response, after stating that others had, was equally fascinating to me.

“It’s always the hope as a scientist that you’re contributing in some way,” she said, “and you know that you’re contributing if somebody else is using what you’ve done.”

 

An enormous and sincere THANK YOU to Dr. Katy Smith for her generous and fascinating answers to my many questions, her gracious help when I had trouble understanding certain points, and for being so much fun with whom to connect! I cannot express how much I wish I could attend her classes, nor how fascinating I found her dissertation. I am profoundly grateful that she shared it with me!

A sincere thank you to my Dad, as well, for helping me understand tooth components (i.e.: dentin, cementum)!

**A quick reminder that I am neither a scientist nor a paleontologist, so any errors in this post are my own.

Bothwell Mastodont Dig, courtesy of Indiana State Museum; many thanks to Bruce Williams and Leslie Lorance!

—————

References:

 

Other references:

 

Cohoes mastodon size comparison

[image of sign in the NY State Museum illustrating the size difference between an extant elephant, a woolly mammoth and the Cohoes mastodon; picture taken by the author]

NH State Fossil? – Part 2: Interview with 4th Grade Students

NHSF - Class members

[image of Rep. Dave Borden, select members of the 4th grade class working on the State Fossil proposal and Thom Smith, their teacher when they were in the 3rd grade, courtesy of Thom Smith]

Below is the initial Q&A I exchanged with Thom Smith (the students’ former teacher when they were in the 3rd grade); Lauren Simpson (the teacher of one of two 4th grade classes at Kearsarge Regional Elementary School) and the students.

All answers were given as “Ms. Simpson’s 4th grade class.”

1. Why do you want a state fossil in NH?

We want a state fossil because all the other states around us have state fossils.  There is only one other state has the mastodon, and that is Michigan.

 

2.  What have you learned about fossils in your class?

We have learned that there are different kinds of fossils.  Not all fossils are bones.  We learned that fossils are like clues.  We learned that digging for fossils can be a lot of fun, but can also take a long time and be difficult. 

 

NHSF - Class

[image of Thom Smith, students and Rep. Dave Borden, courtesy of Thom Smith]

 

3.  Do you ever imagine what NH might have looked like when mastodons lived? Does Mr. Smith’s/Ms. Simpson’s class make you think about things like that?

 

We know the Earth does not look like it did back when mastodons roamed the Earth.  The White Mountains were probably really tall back then, because the mountains hadn’t eroded as much.  Mount Sunapee was probably taller back then, too. 

 

NHSF - at statehouse

 

[some of the students getting a tour of the NH State House by Rep. Borden, image courtesy of Thom Smith]

 

4. Do you think you’d ever want to work with fossils? Discovering them or excavating them as paleontologists?

 

Yes, because…

  1. it might be cool to find a real fossil from way back and just be able to feel it.
  2. you could see the animals back then that don’t exist anymore.
  3. I think it would be fun digging fossils up like a treasure hunt.
  4. You might go on a really long fossil hunt. You might not find anything interesting but you also might find undiscovered species.  You would need a long attention span, though. 

 

5.  What do you think about the process of making a mastodon the state fossil? Has it been hard?  Or has it been fun?

 

I think…

  1. It’s a very long, hard process; it might actually take too long.
  2. It will be fun and a great way for us to learn about bills and stuff like that.

 

NHSF - at statehouse 2

[image of students touring the NH State House with Rep. Dave Borden, courtesy of Thom Smith]

 

6.  Is there anything that I haven’t asked that you would want people to know about on the blog?

 

  1. People should read up on the mastodon.
  2. A fossil of a mastodon was found on the coast of Rye, NH.
  3. It’s going to be really fun to see if we can make it be our state fossil.
  4. If other kids can make other state symbols, we can make this the state fossil.

————————-

This is the first half of posts on the NH State Fossil. Up next, comments from some of the legislators themselves.

 

A Mammut americanum-sized THANK YOU to Thom Smith, Lauren Simpson and all of the remarkable students who worked so hard toward a State Fossil!  I remain impressed and inspired by all of them.

A Mammut americanum-sized THANK YOU to Representative Dave Borden who supported the class and its initiative from the very beginning.  An equally large THANK YOU to the two other sponsors of the bill: Rep. Nancy Stiles and Rep. Tom Sherman!

A Mammut americanum-sized THANK YOU to Will Clyde and Wallace Bothner at UNH and Gary Johnson at Dartmouth!

A Mammut americanum-sized THANK YOU to my friend, Gary Andy, who informed me of their work as it developed!

Thank you so very much to Allie Morris of the Concord Monitor for being the first to do a story about this process!

Thank you, Brady Carlson of NHPR and Dave Brooks of the Telegraph, for continuing to highlight this story!

 

An Ice Age Wonderland – Yukon Paleontology, Part 3

In 2004, scientists in the Yukon discovered a rare and surprising remnant of the Pleistocene: an Ice Age meadow. And some of the grass, although at least 30,000 years old, was STILL GREEN.

Gold bottom turf_30,000 year old grass below ash

[Fossil grass below layer of tephra at Gold Bottom Creek, part of a 30,000-year-old grassy meadow discovered in 2004, from Ice Age Klondike, courtesy of the Government of Yukon. To see a picture of some of the green grass, please see page 33.]

 

In Ice Age Klondike, Dr. Grant Zazula and Dr. Duane Froese explain that this layer—at least 40 meters long–was buried by volcanic ash, or ‘tephra’.

 

30,000 year old bed of Dawson tephra

[The layer of tephra is the whitish colored portion toward the bottom; 30,000-year-old tephra, image courtesy of the Government of Yukon.]

 

Few places in the world offer us such a concentrated wealth of information about the Pleistocene, and the Yukon is one of them.

“There are a lot of common animals like woolly mammoths and bison and horses that we find all the time,” Dr. Zazula said. “But it’s really exciting when we find the bones or the fossils of the rare species, things like camels, or short-faced bears, or lions. Probably for every 500 bones we find, we might find one bone of a carnivore.”

Susan Hewitson in field with lion humerus

[Susan Hewitson holding an Ice Age lion humerus, courtesy of the Government of Yukon.]

lion mandible

[Ice Age lion mandible, courtesy of the Government of Yukon.]

“I think that one of the things that has really been exciting for me,” he offered, “is that, in the last 10 years, the field of ancient genetics has really taken off in terms of being able to extract DNA from Ice Age bones, then study the details of evolution and how these animals are related to one another.”

beth shapiro with horse jaw 2

[Geneticist Beth Shapiro examines a partial upper jaw bone of a Yukon horse emerging from the frozen mud at Quartz Creek, from Ice Age Klondike, courtesy of the Government of Yukon.]

 

fossil horse jaw

[Yukon horse jaw uncovered by placer miners on Quartz Creek near Dawson City, from Ice Age Mammals of Yukon, courtesy of the Government of Yukon.]

 

“[The Yukon is] one of the best places in the world to do that because of the bones being found in permafrost. [There are] so many Ice Age bones that are being found, and they’re really accessible.

“So we work really closely with the geneticists all the time; we’re working on all kinds of different projects together. It’s nice to be able to collaborate with a field like that and make fossils from the Yukon available for study.”

Geneticist Mathias Stiller - tusk - BonesnBugs.2010.TKuhn_082

[Geneticist Mathias Stiller with tusk found in the muck at Quartz Creek, courtesy of the Government of Yukon.]

This author writes from an area within the United States that is fossil-poor (finding one mastodon tooth is an enormous deal, and most years pass without a single reported fossil). In comparison, the amount of fossil bones found in the Yukon staggers the imagination. But that is not all that the Yukon has to offer.

Even those not generally interested in paleontology get excited when they see or hear about mummified Ice Age animals. There is something so much more dramatic, that much more intriguing, about seeing an extinct animal in the flesh.

Dr. Zazula was frank about being slightly envious of Siberia’s wealth in that domain. Outside of Blue Babe, a steppe bison carcass found in Alaska, the most spectacular mummified animals have been found on the other side of the world.

And yet, one cannot ignore that mummified remains—partial or otherwise—are also an exciting part of Yukon paleontology.

mummified ferret

[40,000-year-old mummified black-footed ferret discovered by the McDougall family’s dog, Molly, at their placer gold mine on the Sixtymile River, from Ice Age Klondike, courtesy of the Government of Yukon.]

 

One of the more remarkable finds was a partially mummified horse, discovered by Lee Olynyk and Ron Toews in a gold mine.

26,000 year old mummified Yukon horse (Equus lambei) foreleg recovered a....Canadian Museum of Nature

 

[26,000-year-old mummified horse (Equus lambeii) foreleg showing preserved hair, hide and muscle tissue, recovered at Last Chance Creek, Yukon, from Ice Age Mammals of Yukon, courtesy of the Canadian Museum of Nature.]

 

horse tail

[Image of mummified horse tail, courtesy of the Government of Yukon.]

 

Internal organs as well as a significant portion of the hide (with mane and hair!) were recovered. One can see this at the Yukon Beringia Interpretive Centre, the museum in the capital city of Whitehorse.

Embed from Getty Images

 

Also exciting, but from the neighboring Canadian Territory, was a discovery in the village of Tsiigehtchic. Dr. Zazula participated in uncovering this animal.

“[We excavated] a good portion of a carcass and a skeleton of a steppe bison, which turned out to be about 12,000 years old. There was still a bunch of hair and stomach and intestines and some of the limb bones were still articulated with muscle.”

He wrote about this in more depth with Dr. Beth Shapiro (image above) and several other colleagues in 2009. Not only remarkable for its level of preservation, this was also the first reported mammal soft tissue from the Pleistocene in “the glaciated regions of Northern Canada.

fossil steppe bison skull quartz creek

[Large fossil steppe bison skull found Quartz Creek, from Ice Age Klondike, courtesy of the Government of Yukon. Not the same bison fossil mentioned above.]

Then in 2010, Derek Turner and Brent Ward found the “oldest reliably dated” Western camel fossil found in what was once Eastern Beringia. As mentioned in previous posts, Beringia was the area that covered most of Siberia, Alaska and Yukon when the land was connected in the Pleistocene.

Derek Turner, Brent Ward and Dr. Zazula explain, in their paper about this discovery, that North America was once home to possibly six different species of camel. (There appears to be some dispute about whether six distinctly separate species existed.) And, contrary to what one might expect, Camelops—the camel genus—originated in Central Mexico.

ice age camel metatarsal (foot bone)

[Ice Age camel metatarsal (foot bone), courtesy of the Government of Yukon.]

For someone who has never participated in the excavation of either a mummified animal or fossils from permafrost, it was interesting to learn that there is a distinct smell when working with the muck.

Monitoring Dominion Crk (1)

[Placer gold mining monitor, Dominion Creek, courtesy of the Government of Yukon.]

“The only thing that’s kind of similar is the smell of a barnyard. But this is a barnyard from 30,000 years ago, and it’s from mammoths and horses and camels. All this rotten stuff that was [once] animals and plants that died a long, long time ago, frozen in the ground, and it’s now starting to thaw.”

The ever-growing research and discoveries from the Yukon paint a vivid picture of a by-gone era. It is, perhaps, the closest thing to a window into the Ice Age that we have.

When asked if there was anything that had not yet been found that he would be thrilled to find, Dr. Zazula didn’t hesitate: a woolly rhinoceros.

“We know that woolly rhinoceros are, so far, only found in Siberia,” he said, explaining why this would be so significant. “They extended all the way to the Bering Sea essentially, but they seem to never have crossed Beringia into North America. There is no fossil record of Ice Age rhinos here. But if they did [cross Beringia], that would be pretty amazing to find one of their fossils.”

Dinosaur enthusiasts, however, may be disappointed.

“In the Yukon, there’s almost no record of dinosaurs or Mesozoic fossils at all. I’ve been working with colleagues over the past handful of years, trying to find dinosaur deposits. But there’s no record of dinosaurs here except for a few handful of things. So, it’s not really [the place to be] if you’re interested in dinosaur paleontology. And that’s fine for me because then I don’t have to get involved in dinosaur work.”

“The Ice Age,” he continued, “is definitely what I’m interested in.”

Zazula with horse skull selfie

[Paleontologist Grant Zazula with Ice Age horse skull, discovered this past summer, courtesy of the Government of Yukon.]

Dr. Zazula began grad school in Alberta studying anthropology. Initially, he wanted to become an archaeologist. His undergrad studies focused on Arctic people and research. A strong theme, he explained, centered on the first humans to cross the land bridge into what is now North America.

“I found myself becoming more interested in the environments that those first peoples in North America were encountering,” he mused. “Instead of just trying to study the people themselves, [I wanted to understand] them in more of a wider geographic or environmental context. So, I switched gears during my grad school days from anthropology into biological sciences.”

After doing paleoecological work in the Old Crow region of the Yukon, Dr. Zazula was invited to join a group of researchers working in the Klondike.

“We started doing fieldwork at these gold mines, and we kept on running into these strange balls of hay frozen in the frozen mud, in the Ice Age sediments. And we didn’t really know what they were at first.”

So he contacted Dick Harington—a well-known paleontologist within Canada for his decades of work with fossils and gold miners in the Yukon. Dr. Harington thought they might be Arctic ground squirrel nests, and in further conversation, explained that they had not yet been a topic of study. In other words, not much was known about them.

25,000 year old fossil arctic ground squirrel nest at Quartz Creek, summer 2005 (photo by G. Zazula)

[Fossil nest of an Arctic ground squirrel, 30,000 years old, found at Quartz Creek in summer 2005, from Ice Age Klondike, courtesy of the Government of Yukon.]

“Over the first summer of fieldwork, I think I collected almost a hundred of these ground squirrel nests. And what was really cool about it is that the group that I was working with specialized in glacial stratigraphy [and] using volcanic ash beds to date sediments.

“Because they knew the age of these different volcanic ash layers that are found in the sediment, we could actually place these ground squirrel nests in different points in time in the past. We were able to develop sort of a time series of these Arctic ground squirrel nests.

“[Over] the next four years, I picked apart Arctic ground squirrel nests that [dated] between 20,000 and 80,000 years old or so.”

 Nest with squirrel skull

 

[Arctic ground squirrel nest, courtesy of the Government of Yukon.]

These nests are also known as “middens.” In his paper on the topic, Dr. Zazula and his colleagues describe these underground Ice Age homes. What these middens revealed, not just about these specific Ice Age animals, but about the Pleistocene environment at the time, is incredible.

Contained within these middens were ‘caches’ of food—seeds and plants from the area. These tiny plants give scientists a much better understanding of the climate and environment thousands of years ago.

squirrel nest - quartz creek

[Arctic ground squirrel nest, courtesy of the Government of Yukon.]

 

squirrelnest - cache

 

[Arctic ground squirrel nest, cache highlighted by author, per the paper on this subject.]

 

“I think we’ve identified over 60 different plant species in them, and I wasn’t expecting that at all.”

In addition—and much to this author’s surprise–they found fossil insects, including beetles.

“Fossil Pleistocene beetle remains are actually quite common in sediments,” he said. “And they’re actually pretty useful for climatic reconstructions, because most beetles have a very narrow temperature or climatic envelope that they can live within.”

Squirrel nest - DawsonFieldwork_2011_TKuhn_254

 

[Arctic ground squirrel nest, courtesy of the Government of Yukon. Can you find the squirrel skull?]

 

Embed from Getty Images

[Extant Arctic Ground Squirrel (Spermophilus parryii) hibernating in burrow, Fairbanks, Alaska; Getty Images]

 

In all of Dr. Zazula’s papers, one can see scientists from a variety of fields as co-authors or in the acknowledgements for their help with research. This was reiterated in our phone conversation: he is uniquely positioned as Yukon paleontologist to provide Ice Age material for a wide-range of study to a wide-range of fields.

“Especially with the Pleistocene,” he explained, “there are so many interconnected aspects of research. You need to have a geologist around. And then, in terms of putting the big picture together, you want to have someone that can reconstruct plant fossils. If you’re just doing it alone, you wouldn’t get much of the [big] picture anyway.

“So we’ve really kind of developed this way of doing things as a team.”

Morehouse, Zazula and Stiller

[Archaeologist Jana Morehouse, Paleontologist Grant Zazula and Geneticist Mathias Stiller, image courtesy of the Government of Yukon.]

“To me, it’s all so interconnected: the geology, the ecology and the mammals and then the archaeology. You might as well work together to try to accomplish goals, and that’s how we’ve done it. It’s been pretty successful.”

“And,” he added, “it’s a lot more fun that way anyway.”

Beth Shapiro_withHorse

[Geneticist Beth Shapiro with Ice Age horse jaw, image courtesy of the Government of Yukon.]

“Prior to the Yukon government establishing the paleontology program, all of the fossils that were being collected went back to Ottawa for the National collection and the National Museum. So most of the material that has ever been collected from the Yukon is actually not here. It’s in Ottawa.

“The Yukon government decided in the mid ‘90’s that they would like to establish its own program in Arctic archaeology and paleontology. Since that time, fossils collected here, stay here. And the position [of Yukon paleontologist] was created to oversee that.”

It’s a position he’s held for the past eight years, and one can hear his genuine enthusiasm for it in his voice.

“It’s a great job,” he stated. “Sometimes I’m shocked that I get paid to do this. It’s pretty exciting.”

Over the years, Dr. Zazula has been featured in some of the most prominent global media. Some of those include NPR, the CBC, the NY Times, and the National Post. This past summer, he was filmed with paleontologist Dick Mol from the Netherlands by a German documentary team. That documentary has been aired in Europe since this past December.

Dick Mol and Grant Zazula - Yukon

[Paleontologists Grant Zazula and Dick Mol, photographed by Florian Breier, the director of the German documentary; image courtesy of Dick Mol.]

Not everyone, regardless of their profession, is as comfortable with media or journalists.

“I think there are a lot of people that stay in labs and put their heads down and don’t really interact with the media, but I think it’s really important,” he said.

[I]t’s one thing that’s never taught: how to conduct interviews or how to take your scientific work and present it or make it relevant to the public. And I think that’s a real problem, because if you are a practicing scientist after graduate school, you’re undoubtedly going to do research that attracts interest, and if you don’t have the ability to speak about it or to present it, you lose a lot of traction. In a lot of regards, science is kind of a big competition. It’s like a big science fair. If you don’t produce results and attract attention, you won’t continue to be funded. You can be an excellent scientist and sort of fade away if you don’t have the ability to attract people’s attention.

“I work for [the] government, where we’re publically funded by tax dollars. [F]or some people, [paleontology] might not seem very relevant for society. Still, I think it’s pretty important whenever we have something new to talk about, in terms of new results or new and interesting things, we should make sure it gets out to the public through media.

“Politicians are the people that decide if these programs continue to be funded. And if they see that there’s a lot of media interest and a lot of people learning because of it, then they’ll definitely keep funding these kinds of programs. And I’m grateful that they continue to do so.”

paleoecologist Rolf Mathewes from Simon Fraser University_bison jaw and mammoth tooth

[Paleoecologist Rolf Mathewes from Simon Fraser University,courtesy of the Government of Yukon. Can you pick out the mammoth tooth?]

Explaining the reasons for his fascination with the Ice Age, Dr. Zazula said, “Dinosaur paleontology doesn’t really tell us much about the modern environment. If we’re interested in what we have today and how it’s changing because of, say, climate change, or environmental change, we’re not going to get much information about environmental processes by studying dinosaurs.

The study of the Ice Age, [however], is how the modern world came to be.

“When you think of tens or hundreds of thousands of years ago, it may seem like a long time ago, [but] it’s just a geological instant. And in that short time period–in that geological instant–the changes that have happened to result in what we have here today are amazing!

“To think of giant elephants and lions running around North America: it’s such a different world. And yet so many aspects of that world can inform us of what we’re dealing with today.”

sixtymile mammoth 1

[Image of mammoth skull found by Hawk Mining along the Sixtymile River, courtesy of the Government of Yukon.]

Embed from Getty Images

 

——————–

This trilogy of posts on the Yukon–with all of the beautiful images and the fascinating information they contain–could not have been possible without the generosity of Dr. Grant Zazula.  He is an adept and engaging speaker; the Yukon is incredibly lucky to have him at the helm of the paleontology program!  Once again, and with great sincerity, a Mammuthus columbi-sized THANK YOU to him.

This trilogy would not have occurred without the great generosity and wonderful thoughtfulness of Dick Mol, who is a wonderful, wonderful person.  With great sincerity, I wish him, too, a Mammuthus columbi-sized THANK YOU!

——————–

If you haven’t already checked out these publications by Grant Zazula, Duane Frose and Tyler Kuhn, please do! They are available online:

Other articles referenced:

 

Yukon Paleontology Program: http://www.tc.gov.yk.ca/palaeontology.html

Yukon Beringia Interpretive Centre: http://www.beringia.com/index.html

Terra X – German Documentary: Mammuts – Stars der Eiszeit, http://www.zdf.de/terra-x/mammuts-ikonen-der-eiszeit-35507636.html

Dick Mol – Renowned Mammoth Expert: Fossil Hunting in the Sea

‘Fossil-hunting’ often brings to mind remote locations filled with rocks, sparse vegetation and a bright, merciless sun.

But Dick Mol–an internationally renowned paleontologist–is part of a team that regularly uncovers fossils in an unusual place: the ocean.

Dick MolDick Mol holding Ice Age bison skull found in the North Sea, image courtesy of Rene Bleuanus and Dick Mol

 His expeditions take place upon the North Sea, a large expanse of ocean between the East coast of the United Kingdom and the coasts of several other European countries such as the Netherlands, Belgium, and Germany up through to Norway.

 

Embed from Getty Images
“The North Sea is very rich,” wrote Dick Mol in an email. “Ever since 1874, fishermen have brought large quantities of bones and molars ashore.”

He himself has written articles about these finds, describing how the area is routinely dredged, enabling large ships passage on this navigational route. This dredging is what helps uncover fossils deposited there so many thousands of years ago. Coupled with trawling—a method of fishing that pulls weighted nets along the sea floor—these fossils are then brought to the surface.

“I learned about the Ice Age mammal remains, trawled by fishermen,” he explained, “from the curator of the Geological and Mineralogical Museum in Leiden, now the NCB Naturalis (Netherlands Center for Biodiversity). At that time, the attic of the museum was full of large bones of trawled mammoth bones, skulls and lower jaws. It was very impressive.”

Trawling boat, Stellendam harborFisherman preparing trawling nets as the ship leaves Stellendam harbor for the North Sea, image courtesy of Hans Wildschut and Dick Mol

“I remember,” he continued, “that in November 1992 I brought the late Dr. Andrei Sher, a renowned mammoth expert from Moscow, to the museum. When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world. This was recorded by a film crew making a documentary on mammoths in the Netherlands. Once in a while, I rewatch this brief documentary again, and it gives me very good memories of a longtime ago.”

“When he entered the large attic, he didn’t believe what he was seeing: perhaps one of the largest collections of isolated mammoth bones in the world.” — Dick Mol, describing the reaction of Dr. Andrei Sher to a collection of mammoth fossils from the North Sea at the NCB Naturalis in the Netherlands

Known to the world as Dick Mol, his name is actually Dirk Jan Mol, and he has been researching mammoths and other Pleistocene fauna for decades. One cannot study mammoths without becoming acquainted with his name and his work.

In response to what prompted his career in mammoths, he wrote, “I grew up on the border with Germany. Around the town of Winterswijk a lot of different geological sediments and fossils can be found from the Triassic, Cretaceous, Oligocene, Miocene, Pliocene and Holocene eras. In different quarries and clay-pits you could collect fossils, but none were of mammoths or remains of other Ice Age creatures.”

“I have been, since 1968, fascinated by mammoths. In the literature, you could read that these prehistoric animals stood up to 5 meters at shoulder (which was exaggerated, of course). I wanted to know more about mammoths and their ancestors. I wanted to find my own mammoths, but it seems that the mammoth has found me!”

“I wanted to find my own mammoths, but it seems that the mammoth has found me!” — Dick Mol

His enthusiasm for the topic has lead him to become a visiting scientist in 1990 and 1994 at the Mammoth Site in Hot Springs, South Dakota—part of the “Visiting Scholar” program designed by Dr. Larry Agenbroad. He has co-authored numerous papers over the years, and his books include Mammoths (published 1993) and, more recently, Mammoths and Mastodons of the Haute-Loire (published 2010), a bilingual book he co-authored with French paleontologist, Frédéric Lacombat.

Scientists and explorers from all over the world have invited him to help excavate their discoveries: some of the most notable finds include the Jarkov woolly mammoth in Russia (Mammuthus primigenius), the Nolhac steppe mammoth in France (Mammuthus trogontherii), and parts of a mastodon skeleton in Greece (Mammut borsoni), in which the longest tusks found to-date were uncovered (502 cm in length).

Queen Beatrix of the Netherlands knighted him for his work in paleontology in 2000. In addition, he is President of Mammuthus Club International and has been involved in the international conference related to mammoth research for years.

His family’s personal collection of fossils exceeds 30,000 specimens that have been used for educational purposes and scientific studies.

Today, he is a Research Associate at the following institutions:

For all of his accolades and accomplishments, Dick Mol is a very accessible and kind man. One witnesses his infectious enthusiasm in these two videos about his work in the North Sea:

 

Trawling for Mammoths: http://www.bbc.co.uk/programmes/p01q0gfr

A Mammoth Task: http://www.bbc.co.uk/programmes/p01q29mg

 

“Over the years, tons and tons of bones have been trawled by fishermen in their nets,” he reiterated. “Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”

“Between 1997 and 2003, we weighed the mammoth bones: 57 tons, not including 8000 mammoth molars (!) of woolly mammoths. The southern bight of the North Sea between the British Islands and the Netherlands is very rich in Pleistocene mammal remains. It is a real treasure trove.”–Dick Mol

“In the meantime, I have organized 43 mammoth fishing expeditions on the North Sea using big beam trawlers. Quite spectacular and always a good catch. Doing these expeditions gave us very good insight into those areas that are very productive and those areas in which Pleistocene fossils are scarce.”

Given the enormous number of fossils brought up from dredging, it doesn’t take a lot of imagination to wonder whether there might be exciting fossil discoveries just waiting to be found if one could go even deeper.

“Yes, for sure,” he agreed. “Most of the bones trawled by the fishermen have been washed out of the seabed by currents. The Eurogully area, off the coast of the province of South-Holland, was dredged from 13 to 40 meters below sea level. At approximately 23-26 meters, there is a rich layer with bones and teeth from the Late Pleistocene. Deeper, there is a layer containing an interglacial fauna (110.000-130.000 BP) including Hippopotamusses and straight-tusked elephants. This is true for the entire southern bight of the North Sea.”

Private collector with femur of the so-called straight-tusked elepahnt, North Sea

Private collector with the femur of the so-called straight-tusked elephant from the North Sea,image courtesy of Hans Wildschut and Dick Mol

But the cost of such an underwater excavation might be prohibitive.

“Once, I used a diver on one of the expeditions. Visibility was very poor, and it was not successful. But some divers in the past have found some mammoth remains. Amongst others, a diver brought up a complete mammoth tusk.”

Aside from the need to desalinate fossils found in the North Sea, they are not physically treated any differently than fossils one finds on land. And despite the wealth of fossils found thus far, Dick Mol does not have any favorites.

“For me,” he wrote, “every bone, bone fragment or remnant is unique and tells us a story….”

Mammoth tibia, freshly trawled, with fish... (1)

Mammoth tibia freshly trawled from the North Sea with fish, image courtesy of Hans Wildschut and Dick Mol

Keep in mind, however, that these fragments and bones are not found together.

Paleontology is like detective work: terrestrial excavations include mapping by grid, pictures, and notes related to where each bone is found. All of these details help paleontologists better understand what species it is and what happened to that animal before and after it died.

The bones found in the North Sea are pulled up individually in a mass of fish and other debris.

Without any of the clues available to someone digging on land, this begs the question: can one determine to which species a bone belongs in isolation?

“[A]fter spending more than 40 years of my life identifying isolated skeletal elements (we have never retrieved a complete skeleton from the North Sea bed) again and again, using comparative collections, it is possible to identify the specimens as soon as they are on the deck of the vessel.”

“Sometimes,” he added, “I need to use literature, but in most cases, an experienced anatomist can do it right away.”

And what about the isolated teeth that have been found in abundance?

“[A]t least three different species of mammoths are well-documented: from the Early Pleistocene the southern mammoth, (Mammuthus meridionalis); from the Middle Pleistocene the steppe mammoth, (Mammuthus trogontherii); and from the Late Pleistocene the woolly mammoth, the icon of the Ice Age, (Mammuthus primigenius). The molars of these species are quite different and easy to tell apart from each other by an experienced specialist.”

Grooves and marks upon the bones give rise to questions about who or what caused them: humans or other Pleistocene animals? And how can one tell the difference?

“Hyena gnawing marks and other predators are well-known and, in general, easy to recognize. Of course, you need some training and experience. Sometimes, especially in large bones, one can see the deep grooves in the so-called material spongiosa caused by hyena (pre)molars. Hyena gnawing marks are very often found in the skeletal remains of woolly mammoths and woolly rhinoceroses. The ice-aged hyena was very common on the Late Pleistocene mammoth steppe environment. Cut marks caused by human activity are completely different from those of predators.”

The “quality and quantity” of the fossils in the North Sea are two things that surprise him the most.

“We have huge collections, and we are constantly learning from them.”

Storage private collection Urk (1)

Private fossil collection storage, image courtesy of Hans Wildschut and Dick Mol (Dick Mol is pictured on the left)

Highlighting mammoth teeth

Please click on this (or any) image to see it in more detail, image courtesy of Hans Wildschut and Dick Mol; highlighting by author

“Recently, many collectors are also focusing on small mammal remains (micro-mammals like voles and lemmings). These remains can be found on the beaches of the North Sea where Pleistocene sediments have been added to strengthen the coastline. Some collectors have hundreds and hundreds of small molars of the entire small mammal fauna. These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”

“These small mammal remains provide very interesting data to complete the picture of the woolly mammoth and its Ice Age world. In other words, it gives us a window into the small animal community that coexisted with the megafauna.”–Dick Mol

There are two questions that come to mind regarding the volume of fossils collected so far: where are these fossils stored and how long does it take to catalog and study such collections?

“It is a continuous process,” he stated, referring to the length of time needed to catalog and study the fossils.

But in terms of where they are stored, he wrote, “[t]he NCB Naturalis (Netherlands Center of Biodiversity Naturalis in Leiden) has a huge collection of fossil bones from both the North Sea, as well as from dredging operations in the floodplain of our rivers like Rhine, Meuse and IJssel. Really, a huge collection.”

“Using about 200 skeletal elements of mammoths of almost the same size, same age and same gender, we compiled a skeleton for museum display, a huge male individual. Another extensive collection is housed at the Natural History Museum in Rotterdam. Here, a huge collection of Pliocene and Pleistocene marine mammals is stored. Most of these marine mammal remains have been trawled from the seabed as well, and some of these animals coexisted together with terrestrial mammals like mammoths and other large animals. The marine mammals were living in the paleodeltas.”

Compilation skeleton woolly mammoth, NCB Naturalis Leiden (1)

 

Woolly mammoth skeleton at the NCB Naturalis Leiden Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“And there are some private collections. Some of them are very well documented. They are like professional collections, and they are available and often used for scientific studies.”

“The co-operation between non-professional and professional paleontologists is extremely good in the Netherlands. For more than three decades, both groups have been working closely together on mammoths and mammoth fauna, scoring very interesting results like 14C, stabile isotopes, new species, etc.”

Dick Mol himself posed the final question: “What can we learn from the mammoth bones trawled from the North Sea between the British Islands and the Netherlands?

“The rich terrestrial mammal remains trawled teach us that the North Sea between Britain and the Netherlands was once dry land,” he explained. “The British Islands were connected with the mainland of Europe during the entire Pleistocene or Ice Age (2.580.000 – 11.500 BP). That area was inhabited by different faunas.”

“In the Early Pleistocene, it was a savannah-like environment, dominated by the southern or ancestral mammoths, (Mammuthus meridionalis). In the Middle Pleistocene, it was a steppe-like environment dominated by the steppe mammoth, (Mammuthus trogontherii), and in the Late Pleistocene, it was a cold, dry and almost treeless steppe dominated by woolly mammoths, (Mammuthus primigenius).”

Dick Mol - compilation skeleton

Woolly mammoth skeleton at the Hellevoetsluis Museum, the Netherlands, composed of individual fossils found within the North Sea, image courtesy of Hans Wildschut and Dick Mol

“At the end of the Pleistocene, this landscape disappeared, caused by dramatic change of climate. It became warmer and warmer, and ice–which blanketed the northern hemisphere–started to melt. Melted water filled up lower countries, and the vast plain became ocean. We know this area today as the ‘North Sea’, and it reached its present sea level about 8,000 years ago. The mammoth steppe disappeared and the mammoth fauna became extinct. This extinction is what we need to accept; it is not dramatic.”

“These events—of which we can learn from the North Sea fossils–show us that we are on a living planet and extinction belongs to it.”
————-

A Mammuthus trogontherii-sized THANK YOU to Dick Mol for his generous and detailed answers to my many, many questions; for his time, his wisdom and his thoughtfulness! What a truly great honor and a great pleasure!!

Dick Mol

 

Dick Mol, image courtesy of Hans Wildschut and Dick Mol

Dick Mol’s papers and research: http://hetnatuurhistorisch.academia.edu/DickMol

The Eurogeul—first report of the palaeontological, palynological and archaeological investigations of this part of the North Sea:  http://www.sciencedirect.com/science/article/pii/S1040618205000649

For fascinating pictures and in-depth descriptions of mastodons and mammoths, Mammoths and Mastodons of the Haute-Loire is a great book (published 2010, in English and in French):  http://www.amazon.fr/Mammouths-Mastodontes-Haute-Loire-Dick-Mol/dp/2911794974/

If you are interested in seeing more of Hans Wildschut’s exciting work, here are links provided by Dick Mol:

Trawling and fossils:

Hans Wildschut – trawling for fossils

Hans Wildschut – fossil finds

Hans Wildschut – trawling for fossils, December 2010

Hans Wildschut – exciting fossil finds and collection (Urk)

Remie Bakker and the creation of the life-sized model of the Mastodon of Auvergne:

Hans Wildschut – Remie Bakker’s work

 

TX Natural Science Center – Events planned for National Fossil Day

Celebrating its 4th National Fossil Day, the Texas Memorial Museum in Austin offers events for children, the general public and teachers.

This museum is the exhibit hall of the Texas Natural Science Center (TNSC) at the University of Texas at Austin.  The museum and scientific collections that are part of TNSC work together to create awareness, understanding and appreciation of the past, present and future of biological diversity, especially that of the state of Texas.

Within TNSC are the Vertebrate Paleontology Laboratory, the Non-Vertebrate Paleontology Laboratory and the Texas Natural History CollectionsTNSC’s website states, “All exhibits and education/outreach programs are based on the Center’s collection of 6 million specimens, most of which are from Texas…”

Although not all of the specimens are fossils or from Texas, that number speaks to a wealth of natural resources and research programs and opportunities.

“[W]e in the Austin area are fortunate to be surrounded by fossiliferous Cretaceous limestone, which is the source of many discoveries of fossils by the community,” explained Dr. Pamela R. Owen, Senior Biodiversity Educator at TNSC.

Two fossils on exhibit and found in Texas are the Texas Pterosaur, described by the TNSC website as “the largest flying creature ever found”, and the Mosasaur, a substantial sea creature.  (A recent study of a Mosasaur fossil in Jordan found that they may have had shark tails. You can read about that here: http://phys.org/news/2013-09-mosasaur-fossil-early-lizards-tails.html)

Oldest Fossils

When asked to name the oldest fossil in its collection, Dr. Owen said, “We have a sectioned stromatolite formed by Precambrian cyanobacteria from Minnesota on exhibit at Texas Memorial Museum.”

Stromatolites are layered structures, most of which were built by cyanobacteria (aquatic photosynthetic bacteria with a long evolutionary history). These fossils are, in a way, the footprints of the activity of cyanobacteria, although some have been found that do have the bacteria trapped within them. Stromatolites date as far back as 3.5 billion years.

Chris Sagebiel, Collections Manager of the Vertebrate Paleontology Laboratory (VPL), named two different fossils as the oldest in the VPL Collection.

“Geologically speaking,” he wrote, “our oldest specimens are from Ordovician age rocks in the Arbuckle Mountains in Oklahoma.”

The Ordovician age, as we understand it today, was largely populated with sea creatures. There is evidence of primitive plants and life on land toward the end of the Ordovician.  Horseshoe crabs—creatures we can see now on East Coast shores—are thought to have begun during this period.

“Our collection is home to one of the oldest bony fossils: a fragmentary skull and some scales from Eriptychius, a jawless fish that lived about 450 million years ago.”

Eriptychius,” he continued, “is not terribly well understood. What has been found are only bits of skull and scales. Our Eriptychius fossils are not fully prepped out of the rock, so unless you were looking for Eriptychius fossils, the specimens look like any other rock. Some of the isolated scales have been cut for thin sections. Typically, a 30 micron thick section is taken from the scale to look at the micro-structure of the bone and scales. We do know that they had external armor, at least forming a head shield. They may also have been one of the earliest animals with enamel.”

Below are two images of the Eriptychius fossil and the section he described:

Eriptychius from Chris Sagebiel Eriptychius section from Chris Sagebiel

“…[T]he fossil is just the dark gray bit in the very center of the photo directly across from my thumb and directly below my index fingertip.”

“In terms of human years,” he explained, “the oldest is the Cope-Cummins fossil collection, collected in the early 1890s. Cummins was an itinerant preacher and geologist who collected fossils as part of a larger state geological survey that was conducted under the supervision of Edwin T. Dumble. Most of the fossils were sent back east to noted paleontologist Edward Drinker Cope, who reported on these for the Dumble survey report and elsewhere.”

He sent the image of the lower molars of Equus conversidens below:

Cope-Cummins from Chris Sagebiel

2012 National Fossil Day – Mammoths!

Last year, National Fossil Day events at the TX Memorial Museum centered around mammoths. The theme reflected the 2012 artwork forthat day by the National Park Service.

NFD 2012 Logo

[image of 2012 National Fossil Day, courtesy of the National Fossil Day website]

“My gallery talk,” Dr. Owen wrote in an email, describing her ‘Meet the Mammoths’ presentation, “was next to our Ice Age exhibit in the Hall of Geology and Paleontology, and I set up my table adjacent to the skull and tusks of a Columbian mammoth. That afternoon I had several family groups in attendance at each of my two scheduled presentations, so the energy level was pretty high and the kids all wanted to share their knowledge about mammoths (and the fact that they have seen at least one of the Ice Age movies!)

“We talked about the differences between Columbian mammoths and woolly mammoths and everyone had a chance to gently feel a molar from each species.  I also had some large tusk and bone fragments for the visitors to see and feel.”

2013 National Fossil Day – Fossil ID’s, Teacher Workshops, and Common Misconceptions

Teachers are able to participate in workshops hosted the TX Memorial Museum.  One of the workshops notes that there will be a discussion about “common misconceptions about the fossil record.”

Dr. Owen explained, “First of all, fossils are relatively rare; most organisms are not preserved after death.  The remains of organisms stand a better chance of fossilization if they are rapidly buried by sediment.  And not all fossils are preserved or even discovered.   But the fossil record is complete enough to document evolutionary events and changes in biodiversity over millions of years.”

“One misconception,” she continued, “is that all fossils are simply impressions or organisms ‘turned to stone.’  Fossilization processes vary, resulting in differences in preservation.  For example, wood, bone and shell can be altered by mineralizing solutions.  Minerals in the water moving through sediment can fill pore spaces or completely replace the original material.  Fossils preserved in this manner include ‘petrified wood’, pyritized sea shells, and dinosaur bone.  Sometimes organic remains are preserved by compression, compaction and/or carbonization.  Coal is formed from ancient plants by these fossilization processes.  On the other end of the spectrum, we have fossils that are essentially unaltered, such as the frozen mammoths discovered in Siberia.”

“In the workshop, we will also discuss misconceptions about purported ‘gaps’ in the fossil record, radiometric dating of fossils and the formation of fossil fuels.”

(For more information regarding Lyuba, the best preserved baby mammoth found in Siberia to-date, please see this post: https://mostlymammoths.wordpress.com/2013/09/10/mammoth-article-qa-dr-daniel-fisher-renowned-paleontologist/)

————————

What prompted you into a career in paleontology?

Dr. Pamela Owen:

I have always been interested in natural history, and as a child, I did go through a “dinosaur phase” but mammals have always held my fascination.  I did not take a paleontological path in my studies until I started work on my master’s degree in biology.  My thesis research was on the neck morphology of saber-toothed cats, American “lions”, coyotes and dire wolves at the Page Museum of La Brea Discoveries (at the infamous La Brea Tar Pits) in Los Angeles, California.  More recently I have been focusing on badgers.  I described and named a new species of extinct American badger as part of my studies for the Ph.D.  I remain very interested in the evolutionary history of mammalian predators and enjoy my career as a museum scientist and educator.

Chris Sagebiel:

I really couldn’t say how I became a paleontologist. I just have always been one. We had a farm with fossil bivalves and such poking out of the rocks. Several family members have degrees in geology, though none of them are practicing geologists, we always talk about geology. However, I was in my senior year of college before it dawned on me that I could make a career in paleontology. I was lucky that a spot was open for me in the graduate program at UT, and just happened to have a museum job open up when I completed my graduate degree.

If you are in the Austin area, please do not miss out on these events or the chance to see the fossils at the TX Memorial Museum!

Fossil Identifications at the Paleo Lab: 9 a.m.–noon and 2-4 p.m. Fossil Dig Pit: Young paleontologists can make their own discoveries from 2-4 p.m. Teacher Workshop (pre-registration required): Deep Time Explorations, 6-9 p.m. For more information send an email to Pamela R. Owen or call her at 512-232-5511. http://www.utexas.edu/tmm/events/nfd/ http://www.utexas.edu/tmm/education/profdev/deep-time/index.html

Many, many thanks to Dr. Pamela Owen and Chris Sagebiel!